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ON DEFINING SYMMETRY 
 

The idea of symmetry seems to play a significant role in our human experience. Whatever symmetry is, 

our human sense of aesthetics seems to be drawn to it. We like regularity, pattern, predictability, 

reproducibility.   
 

And we humans seem to be able to recognize symmetry when we see it, even if we haven’t ever defined 

what symmetry is. 
 

Consider, for example, the (capital) letters of the alphabet: 
 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
 

We would all agree, looking at this list, that some letters are more symmetrical than others. 
 

For example, the letter A seems to have “bilateral symmetry” about a vertical line: Flip the letter A 

vertically and it still looks like the letter A. 

 
The letter B has bilateral symmetry about a horizontal line:  
 

 
 

The same is true for the letters C, D, and E, and others. 
 

Letters such as N, S, and Z possess a different type of symmetry: “180
o

 rotational symmetry.” 
 

 
Letters such as O and X possess all these symmetries. Letters such as F, J, P, R none. 
 

              
 

It seems we can state when objects do and don’t possess “symmetry.” Can we give a definition as to 

what symmetry actually is? 
 

The thing to note is that we seem to be talking about motions in the plane that map points of a figure 

back onto the figure. So to capture the meaning of “symmetry” we need to first understand mappings in 

the plane. 
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MAPPINGS: SOME STANDARD EXAMPLES 
 

Loosely speaking, a mapping, is a rule that shifts some/all points of the plane to possibly new locations 

in the plane.   

 

Some examples make this loose definition clearer. 

 

 

EXAMPLE 1: The rule that shifts each point of the plane two units in the positive y  -direction is a 

mapping. 

 
This is an example of a mapping called a translation. 

 

In general … a translation is a mapping that shifts each point in the plane a fixed distance in a fixed 

direction.  

 
 

Note that every point moves to a new location in this mapping. 
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EXAMPLE 2: The rule that reflects each point about the x-axis is a mapping.  

 
This is an example of what is called, surprise surprise, a reflection. 

 

Note that points in the x -axis itself do not move under this mapping. 

 

Writing down a precise definition of reflection takes some doing.  In general, a reflection about a line L  

is the mapping that takes each point P  not on the line and maps it to a point 'P  so that the line L  is 

the perpendicular bisector of 'PP , and takes each point Q  on the line L  to itself. 
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EXAMPLE 3:  The rule that “pushes” each point away from the origin to double its distance from the 

origin is a mapping.  

 
This is an example of what is called a dilation. 

 

Note that the origin itself does not shift in this mapping. 

 

In general, a dilation about a point O  in the plane with scale factor k  (a positive real number) is the 

mapping that takes a point P , different from O , to the point 'P , so that O , P , and 'P  lie on the 

same ray with endpoint O  and so that 'OP kOP= . The dilation keeps the point O  itself fixed in place. 

 

 

Exercise 1: What does a dilation with scale factor 
1

2
k =  do? Is the idea of “pushing away” from the 

point O  still an appropriate description?   

 

 

Exercise 2: Might it be meaningful to discuss a dilation with 0k = ? Or one with a negative scale factor? 
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MYSTERY: MAPS AND SMART PHONES 
 

When one opens the map feature on a smart phone one uses a “two finger swipe” to zoom in on the 

map:   

 

Place two fingers on the screen and slide them apart.  

 

The result is actually a dilation on the screen: Points are being pushed away from the midpoint of your 

two fingers, radially outwards!  All the points to the left and right of the motion of your two fingers are 

being pushed left and right, all the points diagonal to the motion of your two fingers are being pushed 

diagonally outwards, and so on. Look closely! 

 

MYSTERY: A dilation “pushes” all points radially outwards from a given point. And radial motion, 

intuitively, to me at least, should curve straight lines. 

 

 

 
  

But when one zooms in on a smart phone map, all the straight roads in the image stay straight! 

 

QUESTION: Have the programmers of smart-phone maps been clever and written a subroutine that 

straightens all the bent roads as you perform the dilation? Or is it just a mathematical property of 

dilations that they, somehow, are sure to keep straight lines straight? 

 

We’ll reveal all later on! 
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Carrying on with basic examples … 

 

EXAMPLE 4: Some people like to give a special name to a special combination of a translation and a 

reflection.  

 

A translation followed by a reflection in a line parallel to the direction of the translation is called a glide 

reflection.  

 

 
  

 

This appeals to our humanness: we see glide reflections whenever we walk on the beach. 
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EXAMPLE 5:  A rotation about a point O  through an angle 
ox  takes a point P , different from O , to a 

new point 'P  with the properties: 

 

i) 'OP OP=  

ii) '
om POP x∠ =  

 

The rotation leaves the point O  itself fixed in place. 

 

 
 

It is assumed that angles are measured in a counter-clockwise direction. 

 

A rotation of 180
o

is called a half turn and a rotation of 360
o

is called a full turn.  

(A full turn brings all points to their original positions.)   

 

Question: Describe a rotation of 0
o

. (It isn’t much a mapping at all!)  
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ISOMETRIES 
 

The four mappings describe here – translation, reflection , rotation, and dilation  - along with the fifth 

special example of a glide reflection, are the standard examples of mappings discussed in the school 

curriculum. But mappings can be wild and crazy and different types of mappings do arise in different 

branches of mathematics.  
 

But in this discussion we’ll focus our attention on these five classical examples.  

 

 

Here is a picture of a line segment (in red) and its images under each of the basic transformations: 

 

 
 

Apart from the query of whether or not dilations map straight line segments to straight segments, it is 

clear that dilations are qualitatively different from translations, reflections, and rotations:   

 

Dilations change distances between points. 

 

Question: This statement is not quite true. For what scale factor k does a dilation preserve distances 

between points? 

 

Definition: A mapping is called an isometry if it keeps distances between points unchanged.  

 

(More precisely, a mapping is an isometry if, for any two points P  and Q in the plane, with images 'P  

and 'Q , respectively, we are sure to have ' 'PQ P Q= .)  

 

Comment: The prefix iso- comes from the Greek for “the same” and metry comes from the word metria 

for “measure.” 
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It seems that:  

 

 TRANSLATIONS, REFLECTIONS and ROTATIONS ARE ISOMETRIES. 

 

Let’s prove this claim for rotations: 

 

Suppose we have a rotation of xo  about a point O  that takes point P  to 'P  and point Q  to 

'Q . 

 
By the definition of a rotation we have: 'OP OP=  and 'OQ OQ= .  

 

Also, if 'P OQ a∠ = , then  

 

' '

QOP x a

Q OP x a

∠ = −

∠ = −
 

 

and so ' 'QOP Q OP∠ ≅ ∠ . 

 

By the SAS principle it follows that ' 'QOP Q OP∆ ≅ ∆ . Thus ' 'PQ P Q=  and the rotation has 

preserved distances between points. 

 

  

Exercise 3: Prove that translations are isometries.  (HINT: Use properties of parallelograms, or draw a 

diagonal line and look for congruent triangles.) 

 

Exercise 4: Prove that reflections are isometries. (Watch out! There are several cases to consider for the 

location of the each initial point under consideration: on one side, on the other side, or on the line of 

reflection.)   
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SOLVING THE SMART-PHONE MAP MYSTERY 
 

Theorem:  A dilation maps three collinear points to three collinear positions. 

 

Proof:  Assume the dilation is centered about the origin O and has scale factor k . Suppose the 

three collinear points A , B  and C  are mapped to positions 'A , 'B , and 'C , respectively. Our 

goal is to prove that 'A , 'B , and 'C  are collinear. Mark the angles a  and b  as shown. We 

have 180a b+ = o
. 

 

 
 

Now 'OA k OA= ⋅ , 'OB k OB= ⋅ , and 'OC k OC= ⋅ . It follows that ' ' ~A OB AOB∆ ∆  by 

the SAS principle. (Sides come in the same ratio k  and the triangles share a common angle at O

.) Thus ' 'A B O a∠ =  as they are matching angles in similar triangles.   

 

Similarly ' ' ~B OC BOC∆ ∆  and ' 'OB C b∠ = . 

 

Thus ' ' ' ' ' ' ' 180A B C A B O OB C a b∠ = ∠ +∠ = + = o
, which shows that 'A , 'B , and 'C  are 

indeed collinear. 

 

 

Comment:  One can show, in general, that a dilation maps any set of collinear points to collinear 

positions. In particular, dilations take straight line segments to straight line segments. Thus the effect of 

preserving the straightness of roads with the two-finger swipe on smart phone maps is a consequence 

of geometry. The programmers added no alterations to accommodate! 
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FINALLY … WHAT IS SYMMETRY? 
 

We are now ready to say what a symmetry is! 

 

A figure in the plane is said to possess symmetry if there is a mapping that maps the figure onto 

itself.  

 

(This definition is still somewhat loose. We expect every point in the figure to be mapped to a point in 

the figure and no points are to be missed in the mapping, that is, that every point in the figure is the 

image of some point.  We also still haven’t given a precise definition of what a mapping really is. Hmm!) 

 

For example, we would all agree that a square has “vertical line symmetry.” 

 
By this, we mean that the refection about this line maps the square onto itself.  

 

The square, in fact, has four line symmetries.  

 

 
 

The square also possesses an infinite number of rotational symmetries: 

 

 
… though most would say that this list boils down to basically three essentially distinct types of 

rotations, or four if you are willing to consider the trivial rotation of 0
o

. (For the sake of completeness, 

mathematicians do include this trivial rotation in the list.)  
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All in all we say that a square has EIGHT symmetries: 

 

 
 

 

 

EXAMPLE: Identify all the symmetries of a regular pentagon. How many line symmetries does it possess? 

How many rotational symmetries? 

 

Solution: A regular pentagon has five line symmetries (reflection symmetries), one about each 

line through the center of the figure and a vertex. It has five rotational symmetries, rotations of 

0
o

,72 ,144 ,216 ,288
o o o o

 about the center (which includes the trivial rotation.) .  

 
 

Exercise 5: Identify all the symmetries of a regular octagon. How many line symmetries does it possess? 

How many rotational symmetries? 
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Jargon: The following figure, for example, has 180
o

 rotational symmetry about the point O . 

 

 
 

Some like to call 180
o
 rotational symmetry about a point a point symmetry. 

 

 

Exercise 6: Which regular polygons possess point symmetry? 

 

 

Exercise 7:   If possible draw an example of each of the following:  

 i) A quadrilateral with exactly four lines of reflection symmetry. 

 ii) A quadrilateral with exactly two lines of reflection symmetry. 

 iii) A quadrilateral with exactly one line of reflection symmetry.  

 

 

Exercise 8:   

a) List all the (capital) letters of the alphabet that have horizontal line symmetry. 

b) List all the (capital) letters of the alphabet that have vertical line symmetry. 

c ) DICED is a word with horizontal symmetry. Can you think of another word (when written with capital 

letters) with this property? Can you think of a word with vertical symmetry? 
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EXAMPLE: Here’s a design with a repeating motif that extends infinitely far to the left and to the right: 

 

 
 

Such a design is called a frieze pattern. 

 

This design has: 

 

• TRANSLATIONAL SYMMETRY 

One can shift this pattern to the left or to the right to have the design overlap upon itself. 

 

• TWO DIFFERENT TYPES OF POINT SYMMETRY 

Namely: 

 
 

• REFLECTION SYMMETRY  

Both vertical and horizontal 

 

• GLIDE REFLECTION SYMMETRY 

One can translate and then reflect about a horizontal line. 

 

 

Exercise 9: Identify all the symmetries possessed by an infinite array of equilateral triangles that extend 

across the entire plane. 
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Exercise 10: List all the symmetries of a design of nine squares arranged as follows: 

 
 

 

 

 

COMMENT: The concept of “symmetry” extends to three-dimensional figures as well.  

 

For example, a “reflection in a plane” takes a point on one side of a plane to a point on the opposite side 

so that the line segment connecting the two points is perpendicular to the plane and bisected by it. (And 

all points on the plane are held fixed in place by the reflection.) 

 

We can say that a regular hexagonal cylinder, for example, has “plane symmetry.”  
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A SPECTACULAR AND SURPRISING APPLICATION OF 

SYMMETRY: FRIEZE PATTERNS 
 

In classical architecture a frieze is a horizontal structure, usually imprinted with decoration, resting on 

top of columns. The modern equivalent is a horizontal strip of wallpaper used to decorate the top 

portion of a wall just below the ceiling. 

 

 

Usually the design on a frieze is composed of repeated copies of a single motif. If we assume that the 

frieze extends infinitely far in both directions, then the design possesses translational symmetry: shift 

the design the appropriate distance to the left and the design looks identical 

. 

 

  

By a frieze pattern we mean an infinitely long strip imprinted with a design given by a repeating motif.  

 

Mathematicians are interested in the symmetry properties of frieze patterns.  

 

Each frieze pattern, by definition, is symmetrical under a translation T  in the direction of the strip. A 

frieze pattern might also be symmetrical about a horizontal reflection (H ), a vertical reflection (V ), a 

rotation of 
o

180  about some point in the design (R ), a glide reflection (G ), or some collection of these 

five basic transformations.  The frieze pattern above with the letters p, b, q, d above possesses all five 

symmetries.  
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ACTIVITY: REALLY CHECK THIS!   

Make a cardboard copy of this design with the same pattern copied on each side. (Pretend the 

cardboard is transparent so that the design you draw on the back of the card is the “see through” 

version of the design on the front.) 

Verify that the card looks the same if you perform each of the basic transformations on it: 
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Not all frieze patterns possess all these symmetries. 

 

ACTIVITY: Make a cardboard copy of the following frieze design with the pattern drawn on both sides 

(as though the card were transparent). 

 

Verify that this design possesses symmetries T , H , and G , but not V  nor R . 

 

By definition, every frieze design possesses T  as a symmetry. This leaves 16 possible combinations for 

the types of symmetries that a freize pattern might possess. 

 

 

We’ve already seen examples of THG  and TVHGR . Can all other combinations of symmetries actually 

occur in a frieze pattern? 

 

Notice that a frieze pattern cannot possess the symmetries T  and H without G  as well. (A translation 

followed by a horizontal reflection is a glide reflection.)  So we’ll never have a frieze design with the 

symmetries TH , TVH , THR , or TVHR . That leaves 12  possible symmetry combinations.  
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ACTIVITY: Make a card with the word MATHEMATICS! on one side and a copy of this word on the back 

(but written as though the card were transparent and you were seeing the letters though the other side 

of the card. It won’t look like the word MATHEMATICS! on this side.) 

Using your card … 

Verify that the action of a V and an R  is equivalent to an action of aG . This means that any 

frieze design that possesses V  and R  must possess G  as well.  

Verify that the action of a V and an G  is equivalent to an action of aR . This means that any 

frieze design that possesses V  and G  must possess R  as well.  

Verify that the action of a G and an R  is equivalent to an action of aV . This means that any 

frieze design that possesses G  and R  must possess V  as well.  

Show that these observations leave only SEVEN possible symmetry combinations for frieze patterns.  

 

It turns out that frieze patterns with each of these seven symmetry combinations do exists.  

 

ACTIVITY:  

 Design a frieze pattern that possess only T  for its symmetry. 

 Design a frieze pattern that possess only T  and V  for its symmetry. 

 Design a frieze pattern that possess only T  and G for its symmetry. 

Design a frieze pattern that possess only T  and R for its symmetry. 

Design a frieze pattern that possess only T , V , R  and G  for its symmetry. 

 

We’ve already seen a design with T , V , G , H , and R  for its symmetry; and we’ve already seen a 

design with just T , H , and G  for its symmetry.  

 

I’ll show you my designs for each of these symmetry combinations two pages from now. 

 

So we have shown: 

 

There are only seven symmetry types of frieze patterns.  
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Of course, we could extend these considerations up a dimension and consider the symmetries of two-

dimensional wallpaper designs (assumed to extend infinitely far in all directions). 

For example, the design below as translational symmetry (in multiple directions), 90
o
 rotational 

symmetry, reflection symmetries, and so on. 

 

c 

 

Mathematicians have proved that are 17 different wallpaper symmetry patterns! 
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As promised … 
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THE MATHEMATICS OF FRACTALS 
 

Let’s now talk about a very modern field of geometry: fractal geometry. 

 

This subject dovetails our thinking on mappings and symmetry. We say a figure is symmetrical if there is 

a mapping the maps the entire figure back onto itself. A fractal, on the other hand, is a figure composed 

of sections that are the result of mapping the entire figure onto parts of itself.  In fact, each section is an 

exact scaled copy of the entire original shape.  (This is vague and confusing, I know!)  

 

Our discussions on symmetries made no use of dilations. Fractals make significant use of dilations and 

the change of scale they represent.  

 

You no doubt have heard word fractal before and have probably seen pictures of these infinitely 

jaggedly things people call fractals. In this lecture we’ll talk about what fractals are, develop a definition 

for them, and get going on some of their mathematics.  

 

The word fractal was coined in 1980 by Belgian mathematician Benoit Mandelbrot  (1924 – 2010). 

Mandelbrot chose the name “fractal” because it reminds us of the word “fraction.” He did this for good 

reason. Mandelbrot realised that these self-similar shapes have the property of not being one-

dimensional, or two-dimensional, or even three-dimensional,    

but are instead of fractional dimension. (Now we have absolutely no clue what I am talking about!)  

 

To explain, we first need to describe what we mean by dimension. 
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SCALE AND DIMENSION 
 

Recall from a study of scale, that if we enlarge a figure by a scale factor k  (or decrease the image if k  

happens to be smaller than 1), then all lengths in that picture change by a factor k , all areas change by 
2k , and all volumes change by 

3k .  

 
 

If you like, we can say that all lengths are changing by a factor of 
1k . 

 

 
 

This gives us a way to define the dimension of a shape in geometry.  

 

 If an object scales as 
2k , then it is two-dimensional, an area. 

 If an object scales as 
1k , then it is one-dimensional, a length. 

 If an object scales as 
3k , then it is three-dimensional, a volume. 

 

Wouldn’t it be surprising to find some figures that scale in-between these numbers, say as 
1.7k , 

something between a length and an area,  or as  
2.4k , between an area and a volume? 

 

Let’s find such shapes! 
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THE CLASSIC EXAMPLE: SIERPINKI’S TRIANGLE 
 

In 1916, Polish mathematician Waclaw Sierpinski examined the following construction: 

 

Begin with a solid equilateral triangle. 

 
 

Imagine it divided into four congruent equilateral triangles and remove its center one. 

 

The total area of this figure is 
3

4
 the original area. 

Now remove the middle quarters of each of the three solid triangles we still see. 

 
 

Question: Explain why the total area of the solid triangles in this diagram is 
9

16
 of the area of the 

original triangle. 
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Now remove the middle sections of the each of the solid triangles in this diagram, and repeat the 

process over and over and over and over again. 

 

 
 

At each stage the area of the figure decreases by a factor of 
3

4
. So if the original triangle has area 1 

square unit, the areas of the figures at each stage are: 

  

1,

3
0.75,

4

3
0.75 0.56,

4

3
0.56 0.42,

4

3
0.42 0.31

4

3
0.31 0.24

4

3
0.24 0.18

4

=

× ≈

× ≈

× ≈

× ≈

× ≈

M

 

 

Are these values decrease to zero? If I could continue this process forever, would the resulting figure 

“contain no area” and so be just be a nest of lengths, the boundaries of all the regons? 

 

Or does the some area “survive” and the figure stays an area since it starts that way and stays that 

way at every stage? 
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Sierpinsky’s triangle is the figure that would result if we could carry this process of removing middle 

triangles forever. We as humans can never conduct an infinite process and so we will never see a true 

representation of Sierpinsky’s triangle. But we do feel we can image one in our minds. 

 

So the question at hand is …  

 

IS THE SIERPINSKY’S TRIANGLE, the true result we would have at the end of the infinite 

process, A LENGTH OR AN AREA? 

   

To answer this need to examine how the figure behaves in scaling by a factor k . If its size changes by a 

factor 
2k , then we know it is an area. If its size changes by 

1k , then we know it is length. 

 

 

But notice first that Sierpinski’s triangle is composed of three pieces, each an exact scaled copy of the 

entire shape. In fact, we can see that the scale factor for each piece is 
1

2
k = , as each small piece has 

base half the length of the base of the whole figure. 

  

 

 
 

 

Also , since the whole figure is composed of three identical pieces, we have that the “size” of any one 

piece is one-third the size of the whole thing. (If Sierpinsky’s triangle is an area, then I would say that the 

area of any one piece is one-third the area of the whole triangle. If Sierpinsky’s triangle is a length, then I 

would say that the total length of any one piece is one-third the total length of the whole triangle.) 
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Alright …  IS SIERPINSKI’S TRIANGLE AN AREA? 

 

If it is, then each piece scales as 
2k . We get a contradiction: 

 

 
 

Hmm…. IS SIERPINSKI’S TRIANGLE A LENGTH? 

 

 
 

Another contradiction! 
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Alright, let’s just say it is d -dimensional and let the mathematics tell me what d  should be. 

 

 
 

We need a value d  so that 2 3
d = .  

 

 2d =  is too big. 

 1d =  is too small. 

 1.5d = , on a calculator, is too small. 

 1.6d = , is just a tad too big. 

 

It turns out that 1.58....d =  works. 

 

Sierpinski’s triangle is an object somewhere between being a length and an area (slightly more area-like 

than length-like!)  
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SIERPINSKY’S MAT 
 

This time start with a square, divide it into nine congruent sub-squares and remove the innermost 

square. Repeat this process on eight remaining squares, and then again on all the squares that survive, 

and again, and again, ad infinitum. 

 

 
The “end result,” if we could actually see it, is Sierpinsky’s mat: 

 

 
 

The mat is composed of EIGHT copies of itself each at one-third the scale. 
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The same mathematics show that it has a dimension d  that satisfies 3 8
d = . We get that 1.89...d = . 

  

 
 

 

We can now see a definition for a fractal. 

 

A fractal is a figure composed of pieces that are each themselves a scaled copy of the entire 

original figure.  

 

Figures with such self-similarity can have dimensions that are not integers.  

 

I need to point out again that these are very much a construction of the mind. Fractals are the end result 

of an infinite process. We can never fully construct these objects in our human lifetimes.   

  

Exercise 11: What is the fractal dimension of this fractal?  

 

 
 

 

Exercise 12. The Seirpinski sponge is constructed from a cube by dividing it into 27 small cubes and 

removing the very center cube and the center cube of each face. The action is then repeated on the 20 

remaining cubes, and then repeated over and over again in the cubes that remain after each iteration.  

What is the fractal dimension of the Sierpinski sponge? 
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ANOTHER INFINITE PROCESS: 

PAPER TEARING and the GEOMETRIC SERIES FORMULA 
 

There is an infinite process that most people feel they can visualize and understand the “final” result. 

Here Albert explains a paper-tearing exercise to his two friends Bilbert and Cuthbert: 

 

Here’s a piece of paper which I am tearing into thirds. I’ll give each of you a third and keep the 

remaining third for myself. 

 

Actually, I am a generous guy, and so I am going to tear my third into thirds again and give you 

each a piece.  

 

Right now you each have a third plus a third of a third ( 1 / 3 1 / 9+ ) and I am holding onto a 

small piece one-ninth in size.   
 

Actually let me tear my ninth into thirds and share again.  

 

Now you each have 
1 1 1

3 9 27
+ +  of paper and I have a tiny amount – which I’ll share again by 

tearing into thirds. 
 

 

Now imagine I do this forever. The amount of paper I possess dwindles away to nothing and the 

paper is being equally shared among you both. 
  

 

Now ask: In the end, how much paper will you each get? 

 

The math says that you will each receive 
1 1 1 1

3 9 27 81
+ + + +L  paper. But logic says that since  

all the paper is shared equally between you both, you each get half the paper. Thus: 

1 1 1 1 1

3 9 27 81 2
+ + + + =L . 
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In the same way if I share a piece of paper with 19  friends by tearing it into 20 pieces and 

divvying up my share over and over again we’ll see: 

 
2 3

1 1 1 1

20 20 20 19

   
+ + + =   
   

L  

 

In general we have the formula: 
2 3

1 1 1 1

1N N N N

   
+ + + =   

−   
L  

 

 

This final formula is a version of the geometric series formula one learns in a pre-calculus class. 

 

The point is we can get to this infinite formula in a way that makes intuitive sense: the paper Albert 

holds really will dwindle to nothing.  

 

 

 

Exercise 13:  In what way does the following diagram illustrate the geometric series formula for 3N = ? 

 

 
 

Optional Challenge: Care to find a picture that shows 
1 1 1 1 1

4 16 64 256 3
+ + + + =L ? 

 

 

Exercise 14: Use the geometric formula to show that the infinitely long decimal 0.1111111...  

equals the fraction 
1

9
. 
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Exercise 15: Consider the following “city-scape” construction. 
 

Begin with horizontal segment and place on its middle-third a solid square. Repeat this process for each 

horizontal section that appears, ad infinitum. 

 

 
 

The “end result” is a indeed reminiscent of a city-scape.  

 

Prove that this design is no more than 
1

2
 a unit high. 

 

Comment: This figure is not a fractal. It is true that the figure is composed of three pieces that are scaled 

copies of the entire figure, but there is a fourth piece – the central solid square – that is not a copy of 

the entire figure. (A fractal is composed solely of scaled copies of the original.)  
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 ANOTHER CLASSIC EXAMPLE: THE KOCH SNOWFLAKE 

 

The following construction was studied by Helge von Koch in 1904.  

 

Start with an equilateral triangle and add an equilateral triangle to the middle third of each boundary 

segment. Repeat, ad infinitum. 

 

 
The resulting figure is called the Koch Snowflake. 

 

Exercise 16:  

a) Show that the perimeter of the figures in this construction increase by a factor of 
4

3
 from one 

stage to the next. What is the perimeter of the Koch snowflake? 

  

b) If the area of the initial equilateral triangle is 1 square unit, prove that the area of the Koch 

snowflake is 1.6  square units, exactly!  

 

 

The Koch snowflake is an example of a geometric figure of infinite perimeter enclosing a finite area! 

 

 

Exercise 17: The Koch snowflake is not a fractal, but the boundary of one side of the snowflake is. 

 

 
The section of boundary shown in green here is composed of four copies of itself, each copy at one-third 

the scale.  

 

What is the fractal dimension d of this section of boundary? 
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FRACTALS AND NATURAL PHENOMENA 
 

The Koch snowflake has the property that it has an extraordinarily large perimeter (in fact, infinite 

perimeter) for a shape of finite area. A three-dimensional analog would be a shape of fixed volume with 

a very large surface area.  

 

Natural biological systems often need to utilize such scenarios to garner efficient function. For example, 

the small intestine of the human body absorbs nutrients through its lining. The greater the surface area 

exposed to food sources, the more nutrients it can absorb. But the human body is a fixed size and there 

are limitations on how much volume the small intestine can occupy.  

 

To maximize surface area for a small volume, the inner surface of the intestine is not flat, but rippled. 

Moreover, the ripples of tissue are covered with villi, small projections of tissue that increase surface 

area. And on these villi are microvilli, increasing the surface area even more.  

 

A typical small intestine is about 6 meters long yet the surface area it offers is 250 square meters – the 

size of a tennis court!  

 

The typical adult lung offers a surface area of about 100 square meters. (Why is large surface area for 

lungs necessary with regard to their function?) 

 

In the marine world, a sea sponge is a colony of small animals that garners its food from contact with 

the surrounding water. In order to increase surface area, a sea sponge leaves a large number of holes in 

its structure. 

 

Exercise 18: Why does a block of Swiss cheese dry out faster than a block of cheddar cheese? 

 

Exercise 19: Two walls of identical size are to be painted. One has a smooth surface and the other a 

textured surface. Which wall will require the greater amount of paint to cover? 
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A FRACTAL SURPRISE FROM ARITHMETIC  
 

Pascal’s triangle possesses the number 1 at its apex and thereafter each number in the triangle is the 

sum of the two numbers directly above it (with a “blank space” considered the number zero). 

 

  

Color in all the cells containing on odd number. Do this for the first fifty or so rows of Pascal’s triangle.  

 

What do you see? 

 

Can you explain why the pattern you see is sure to continue? 

 

 

 


