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WHAT IS A FRACTION? 
 

As we shall see answering this question is far from easy! It is incredibly hard to pin down 

exactly what a fraction is. (If you want to see the full details right now as to why 

fractions are so philosophically thorny, take a peak at the essay at the end of this 

pamphlet on page 63.) 

 

As one goes through the early grades of school one is introduced to different ideas as to 

what a fraction could be – a portion of pie, an answer to a sharing problem, a point on a 

number line, an actual number in its own right, and more – and it is far from obvious if 

all these different attempts to answer what a fraction is are the same. One goes from 

grade-to-grade with different pictures in mind and it is usually not clear if you are meant 

to forget your understanding of fractions from previous grades or not. It is all very, very 

confusing.  

 

In the next number of pages we’ll explore different attempts to answer the question as 

to what a fraction is. But this feat is akin to the ancient Indian parable of blind men 

feeling an elephant. Each speaks a truth: “An elephant is a flat expanse of leather” 

(feeling its belly). “An elephant is a hard bone” (feeling the tusk). “An elephant is a 

length of rope” (feeling its tail). But no answer actually says what an elephant is in 

totality. We’ve give students different aspects of a truth of what a fraction is and over 

the course of the early grades these answers feel contradictory. No wonder we are all 

left unsettled and uncomfortable with fractions and view them with deep suspicion! 

 

In these notes we’ll go through some possible answers to what a fraction is. Then we’ll 

see if we can pull out the features of each answer that seem to point to truth, to key 

properties we like to believe about these things.  

 

That is, we’ll go through the various stories of fractions, and then let them go! We’ll let 

the mathematics itself be the ultimate story that explains everything we hold true about 

fractions. 
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MODEL 1:  

A FRACTION IS A PART OF A WHOLE 
 

In the early grades we usually model fractions as parts of a whole. And pie seems to be 

the favoured whole. We draw pictures of half a pie: 

 

   
 

and a third of a pie: 

  
and so on. 

 

We can take three fifths, and draw a picture of it, , and we are taught to write 

this as 
3

5
. This is actually a bit confusing! Here what three fifths actually look like:  

 

 
 

So three fifths is 
1 1 1

5 5 5
+ + . This is three groups of one-fifth, which, in terms of 

multiplication is 
1

3
5

× :  

 

1 1 1 1
3

5 5 5 5
+ + = ×  

 

 

I’M CONFUSED! Should I wonder if 
1

3
5

×  and 
3

5
 are the same thing or not? Is this even a 

question? Maybe “
3

5
” is a shorthand for 

1
3

5
× , three groups of one-fifth? 
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It is usually assumed, without explicit mention, that 
a

b
 is indeed shorthand for a  groups 

of 
1

b
.  

 

Given this shorthand …What is 
5

5
? It’s 

1
5

5
× , five groups of one fifth: 

 

 
 

 

That’s one whole. So we have:  
5

1
5
= . 

 

 

EXERCISE 1: What is 
2

2
 shorthand for? Draw a picture to show, in this thinking,

2
1

2
= . 

Draw a picture to explain why, in this thinking, 
4

2
2
= . 

 

 

To summarize:  

 

If b  is a positive whole number and we divide a pie into b  equal parts, then 

one of those slices is denoted 
1

b
.  

 

If a  is a positive whole number, then 
a

b
 is shorthand for 

1
a
b

× , that is, a  of 

those slices. 

 

 

So here, in this model, a fraction is an actual amount of pie. We have that 
a

b
 is a  slices 

of actual pie.  
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EXERCISE 2: There is nothing special about circular pies. For example, a hexagonal pie is 

good for illustrating the fractions 
1

6
, 
2

6
, 
3

6
, 
4

6
, 
5

6
 and 

6

6
. 

 
a) Why is this shape used? What does the amount of pie associated with the 

fraction 
1

6
 look like? 

 

b) What does the amount of pie associated with the fraction 
6

6
 look like?  

 

c) What shape pie would be good for illustrating the fractions 
1

8
 up to  

8

8
? 

 

d) Are 
4

8
 and 

1

2
 the same fraction? Explain. 

 

 

 

EXERCISE 3:  What fraction is represented by the shaded portion of this rectangular pie? 
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ADDING EASY FRACTIONS IS EASY IN THIS MODEL 

 

The fraction 
2

7
is two sevenths of a pie.  

 

The fraction 
3

7
 is three sevenths of a pie.  

 
 

And adding pieces of pie together makes good practical sense in this pie model: 

 

 

We see that the answer is 
5

7
:  

     

2 3 5

7 7 7
+ =

.   

 

Most people just read this as “Two sevenths plus three sevenths gives five sevenths” 

and think that the problem is just as easy as saying “two apples plus three apples gives 

five apples.”  And in this model it is! We are adding together objects in units of 

sevenths. 

 

In this model we like to believe: 

 

a b a b

N N N

+
+ =  

 

(Here a , b , and N  are positive whole numbers.)  

 

 

Adding fractions given in the same units is easy. If we mix the units, however, matters 

get thorny. For example, I feel like I can draw a picture for 
2 5

3 19
+  but I am not sure if I 

want to write the answer as a single fraction. That seems hard.  
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MODEL 2:  

A FRACTION IS AN ANSWER TO A DIVISION PROBLEM 
 

When we divide a pie into equal parts - as for the previous model - we are really sharing 

the pie equally among a group of people. All the ideas from the previous models are the 

results of sharing. So really … 

 

MODEL 2: A fraction is an answer to a division problem. 

 

For example, suppose 6  pies are to be shared equally among 3  boys. This yields 2  pies 

per boy. We write: 

6
2

3
=

. 

 

(We could, of course, also write 6 3 2÷ =  or  .) 

 

 

 
 

Here the fraction “
6

3
”, our division problem, is equivalent to the number 2 . It 

represents the number of pies one whole boy receives.  

 

 

In the same way … 

  

sharing 10  pies among 2  boys yields:  
10

5
2
=  pies per boy. 

 

sharing 8  pies among 2  boys yields: 
8

4
2
=  
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sharing 5  pies among 5  boys yields: 
5

1
5
=  

and   

the answer to sharing 1 pie among 2  boys is 
1

2
, which we call one half. 

 

This final example shows that our new answer to what a fraction is really is a better 

answer than model 1. The pictures were we drawing in model 1 really were the results 

of sharing problems.  

 

If one pie is shared (equally) between two boys, then each boy receives a portion 

of a pie which we choose to call “half.” 

 

 
 

In the same way, the picture  represents “one third,” that is, 
1

3
,  the amount of 

pie an individual boy would receive if one pie is shared among three. 

The picture  is 
1

5
, the amount of pie an individual boy receives when one pie is 

shared among five. 
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Think about the fraction 
3

5
. In our new sharing model this is the answer to sharing three 

pies equally among five boys: 

 

 
 

We could accomplish this by dividing each pie into five equal parts and giving each boy 

three of those parts.  

 

EXERCISE 4: Here is the answer to a division problem:  

 
This represents the amount of pie an individual boy receives if some number of pies is 

shared among some number of boys. 

 

How many pies?  _________ 

How many boys?  _________ 

 

 

EXERICSE 5:  Leigh says that “
3

5
 is three times as big as 

1

5
.” She argues:  

In one room, three pies are shared among five boys. 

In another room, one pie is shares among five boys.  

 

Is it clear that each boy in the first room receives three times as much pie as each boy in 

the second room? Is this a valid way to think about matters?  

 

EXERCISE 6: What does the division problem  
1

1
 represent? How much pie does an 

individual boy receive? 

 

EXERCISE 7: What does the division problem  
5

1
 represent? How much pie does an 

individual boy receive? 
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EXERCISE 8: What does the division problem  
8

8
 represent? How much pie does an 

individual boy receive? 

 

EXERCISE 9:  A CHALLENGE 

Here is the answer to another division problem. This is the amount of pie an individual 

boy receives 

 
 

How many pies were there in the division problem? ______  

 

How many boys were there in the division problem?  _____  

 

Are you clear that your answers are correct? 

 

EXERCISE 10:  MORE OF A CHALLENGE:  

How many pies and how many boys for this answer?  

 

 
Number of pies:  ______ 

Number of boys:  ______ 
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In this second model:  

 

A fraction 
a

b
 represents the amount of pie an individual boy receives when a   

pies are shared equally among  b  boys.  

 

 
 

(We are assuming, for now, that both a  and b  are positive numbers.)   

 

Notice now that fractions are now quantities in terms of pie per boy. Something has 

indeed subtly changed in going from model 1 to model 2. (In model 1, fractions were 

just pie.)  

 

EXERCISE 11: What is 
2

2
? 
7

7
? 
100

100
? What is 

a

a
 for any positive whole number a  ?  

 

EXERCISE 12: What is 
1876

1
?  

 

Exercises 11 and 12 suggest that for each positive whole number a  we have: 

 

1
a

a
=

     

and  

1

a
a=

. 

 

 

 

EXERCISE 13: “I have no pies to share among seven boys.”  Use this to make a statement 

about a division problem and hence a statement about fractions.    
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PLAYING WITH NUMERATORS AND DENOMINATORS:  
 

For a fraction 
a

b
, the top number a  (which, for us, is the number of pies) is called the 

numerator of the fraction, and the bottom number b  (the number of pies), the 

denominator of the fraction.  Most people insist that these numbers each be whole 

numbers, but they really don’t have to be. 

 

To see what I mean, let’s have some fun! 

 

 

QUESTION: What does 
1

1

2

 
 
 

 represent? 

 

This means assigning one pie to each “group” of half a boy. So how much would a whole 

boy receive?  

 

Answer: Two pies! 

 
We have:  

1
2

1

2

=
 
 
 

 

 

 

 

COMMENT: It seems we have returned to model 1 here. What do we mean by “half a 

boy”? Or maybe we are thinking gruesome thoughts a la model 2 and are sharing a boy 

equally among two ogres! 
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QUESTION: What does 
1

1

3

 
 
 

 represent? 

 

Answer: Distributing one pie to each third of a boy yields the result of 3  whole pies for 

an individual boy.  

1
3

1

3

=
 
 
 

 

 

 

EXERCISE 14: What is the answer to 
1

1

6

 
 
 

?  

 

EXERCISE 15: The answer to 
5

1

2

 
 
 

 is ten. Do you we why? [How many pies are given to 

half a boy?] 

 

EXERCISE 16: What is the answer to 
4

1

3

 
 
 

? 

 

 

SCARY COMPLETELY-OPTIONAL CHALLENGE:  

Two-and-a-half pies are to be shared equally among four-and-a-half boys!  

 

 
How much pie does an individual (whole) boy receive?   

 

This is a very tricky problem. Only attempt this if it seems fun to do so. We’ll see a very 

easy way to think about these types of problems a little bit later.  
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THE KEY FRACTION RULE 

We have that 
a

b
 is an answer to a division problem:  

a

b
 represents the amount of pie an individual boy receives when a  pies are 

distributed among b  boys. 

 

What happens if we double the number of pies and double the number of boys? 

Nothing! The amount of pie per boy is still the same:  

 

2

2

a a

b b
= . 

 

For example, as the picture shows, 
6

3
 and 

12

6
 both give two pies for each boy. 

 

                                       
 

And tripling the number of pies and tripling the number of boys also does not change 

the final amount of pie per boy, nor does quadrupling each number, or one-trillion-

billion-tupling the numbers!   

 

6 12 18

3 6 9
= = =L  = two pies per boy 
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This leads us to want to believe a fraction rule:  

 

FRACTION RULE: 
xa a

xb b
=  (for positive whole numbers at least).  

 

For example,  

3

5
   (sharing three pies among five boys)  

 

yields the same result as  

 

3 2 6

5 2 10

×
=

×
  (sharing six pies among ten boys),  

 

and as 

   
3 100 300

5 100 500

×
=

×
  (sharing 300  pies among 500  boys). 

 

Going backwards … 

 

   
20

32
 (sharing 20  pies among 32  boys)  

 

is the same problem as:  

 

   
5 4 5

8 4 8

×
=

×
  (sharing five pies among eight boys). 

 

 

Comment: Most people say we have “cancelled” or “taken” a common factor of 4  from 

the numerator and the denominator.  

 

Mathematicians call this process reducing the fraction to simpler terms. (We’ve made 

the numerator and denominator each smaller.) Teachers tend to say that we are 

simplifying the fraction. (One has to admit that 
5

8
 does look simpler than 

20

32
.)  
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As another example 
280

350
 can certainly be simplified by noticing that there is a common 

factor of 10  in both the numerator and the denominator: 

  

    
280 28 10 28

350 35 10 35

×
= =

×
. 

 

We can go further as 28  and 35  are both multiples of 7 : 

 

    
28 4 7 4

35 5 7 5

×
= =

×
. 

 

Thus, sharing 280  pies among 350  boys gives the same result as sharing just 4  pies 

among 5  boys! 

 

    
280 4

350 5
= . 

 

As 4  and 5  share no common factors, this is as far as we can go with this example 

(while staying with whole numbers!). 

 

EXERCISE 17: MIX AND MATCH 

On the top are some fractions that have not been simplified. On the bottom are the 

simplified answers, but in random order. Which simplified answer goes with which 

fraction? (Notice that there are less answers than questions!)  

 
 

1. goes with _____ 

2. goes with _____ 

3. goes with _____ 

4. goes with _____ 

5. goes with _____ 

6. goes with _____ 
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EXERCISE 18: Jenny says that 
4

5
 does “reduce” further is you are willing to move away 

from whole numbers. She writes:  

 

4 2 2 2

1 15
2 2 2
2 2

×
= =

×
. 

 

Is she right? Does sharing 4  pies among 5  boys yield the same result as sharing 2  pies 

among 
1

2
2

 boys? What do you think? 
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ADDING FRACTION IS CONFUSING IN MODEL 2 
 

Here are two very similar fractions: 
2

7
 and 

3

7
. What might it mean to add them?  

Now … 

 

2

7
 represents 2 pies being shared among 7 boys 

3

7
 represents 3 pies being shared among 7 boys 

 

so 
2 3

7 7
+  probably represents sharing 5  pies among 14  boys, giving the answer 

5

14
. 

 

But this contradicts what model 1 says: two sevenths plus three sevenths equals five 

sevenths.  

 

Hmm. 

 

Question: If you are interested … Is there a way to make sense of 
2 3

7 7
+  equaling 

5

7
 in 

this pie per boy model? (If Poindexter is part of an action of sharing two pies among 

seven boys and then later part of an action of sharing three pies among seven boys, 

then …?) 

 

Is this type of think too confusing and not worth the bother? 
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MULTIPLYING FRACTIONS MAKES NO SENSE IN MODELS 1 AND 2! 

 
At some point in our schooling we learn to multiply fractions. But this is mighty odd. 

 

In model 1 it makes sense to add pie:  

 

 
but it makes no sense to multiple pie. 

 
 

 

In model 2, adding amounts of pie per boy is hard to think through.  I have no clue what 

it means to multiply amount of pie per boy! 

 

 

 

BUT ONE TYPE OF MULTIPLICATON DOES MAKE SENSE IN MODEL 2 
 

In the fraction 
a

b
, a  pies are being shared among b  boys.  

 

How could I double the amount of pie each boy receives?  

Answer: Double the number of pies! 

 

We have:  

  

2
2

a a

b b
= ×  

 

Comment: This is really saying something! It reads “If we double the number of pies, 

then we get double the original amount of pie per boy.” 

 

 

In the same way we can triple the amount of pie per boy by tripling the number of pies: 

3
3
a a

b b
× = , and so on. 
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This leads to the belief:  

 

a xa
x
b b

× =  

 

for positive whole numbers x , a , and b . 
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MODEL 3:  

FRACTIONS ON THE NUMBER LINE 
 

In early school we often associate multiplication with the geometry of area. 

 

 What is 17 18× ? 

 

It is the area of a rectangle with one side of length 17  and the other side of 

length 18 . 

 

 
 

(After all, we feel that 306  unit squares will fit into this rectangle.) 

 

So to multiply fractions, this means we are going to have to – somehow – think of 

fractions as lengths.  

 

To do this, curriculum writers suggest that we go back to model 1. But instead of 

thinking of parts of pie, think of parts of the number line. 
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Let’s take this slowly:  

 

 A pie is now a line segment one unit long. 

 

 
 

The fraction 
1

3
, say, is a piece of this pie given by dividing that pie into three 

equal parts. 

 

 The fraction 
2

3
 is shorthand for two of those pieces: 

2 1
2

3 3
= × . 

 

     
 

And 
5

3
 is five of those pieces, and so on.  

 

Now it seems very tempting to use the “one third” piece as a unit of measure along a 

number line, measuring to the right from zero. 

 

 
So now we associate with each fraction a location on the number line. Moreover, each 

location also represents a length: The distance of that location from zero. 

 

In this model:  

 

A fraction 
a

b
is a location on the number line. It is given by taking a  steps from 

zero in units of 
1

b
.   
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EXERCISE 19: Draw a similar picture to show the location of the point 
7

5
 on the number 

line. 

 

 

 

EXERCISE 20: What do you think we mean by the fraction 
7

5
− ? Can you draw a number-

line picture for it? 

 

 

And moreover we can now associate with each fraction a length: 

 

The fraction 
a

b
 is a length: It is the distance between 0  and 

a

b
 on the number 

line.  

 

 

Now that we can associate lengths with fractions, we can now use area to make sense 

of multiplying fractions. (This seems awfully contorted!) 
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MULTIPLYING FRACTIONS 

THE HARD CONFUSING WAY WITH MODEL 3  
 

Let’s work out 
4 2

7 3
× , say, as an area problem.  

 

Instead of starting with a rectangle, let’s start with square, viewing its sides as unit 

lengths on a number line. Divide one side-length into sevenths and the other side-length 

into thirds and mark off the 
4

7
 and 

2

3
 positions, as though the sides really are part of a 

number line. 

 
 

The product 
4 2

7 3
×  is the area of the shaded region shown. But we see that the whole 

square is divided into 21  pieces in all and we’ve shaded 8  of them. This is
8

21
 of pie.  

 

I’M CONFUSED! I thought we weren’t using the pie model any more! 

 

 

THINKING EXERCISE:  The area problem  
4 2

7 3
×  yielded a diagram with 21 small 

rectangles, eight of which were shaded. Is it a coincidence that “21” happens to equal 

seven times three and “8” is four times two? 
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THE TRUTH ABOUT FRACTIONS: 

FIVE BELIEFS 
 

In these notes we’ve looked at three common models for introducing fractions – one 

has fractions as actual parts of a whole (pieces of pie), one has fractions as proportions 

(portions of pie per boy), one has fractions as points on the number line (representing 

lengths: distances from the point zero). There are other models for fractions too. But no 

one model can speak the whole truth about fractions: the addition of fractions might 

make sense in one model, but not in another. The same for the multiplication of 

fractions, or the division, and so on.  
 

But one thing we haven’t explicitly said in these notes so far is that: 
 

 Fractions should be numbers! 
 

That we represented fractions as locations on the number line came close to making 

that claim, but we didn’t actually make it.  
 

So if we come to idea that fractions should be numbers, we have to ask … What 

properties of arithmetic do we feel they should follow?  
 

We certainly expect them to follow all the usual rules of arithmetic (that a fraction times 

1, like all numbers, should remain the same; that the order in which one chooses to 

multiply two fractions should not matter; and so on). But what special properties to 

fractions do we feel should be true? 

 

The three models did identify five particular beliefs that feel very right for fractions: 

 

Two basic beliefs:  

BELIEF 1:   1
a

a
=  

 

 

BELIEF 2:   
1

a
a=  

 

A key belief:  

BELIEF 3: 
ax a

bx b
=  

 

(This one seems important as it explains why 
4

6
 and 

2

3
, for example, represent the 

same fraction.) 
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A belief about basic addition: 

 

BELIEF 4:  
a b a b

N N N

+
+ =  

 

And a belief related to multiplication: 

 

BELIEF 5: 
a xa

x
b b

× =  

 

These beliefs, in our models, assume that a , b , x , and N  are positive whole numbers.  

 

Even though I don’t know what a fraction actually is – none of the models have really 

pinned down an answer to that question – I have at least identified features that my 

intuition says should be true about how these numbers, called fractions, whatever they 

are , should behave. 

 

Now… let’s push matters further.  

 

The five beliefs identified here were motivated by models using positive whole 

numbers. So here’s a question: 

 

Do these five beliefs feel so fundamental and so right that you feel they should 

hold for all types of numbers, not necessarily just positive whole numbers? 

 

It seems delightfully compelling to answer YES just to see where the logical 

consequences take us! 

 

In fact, if we choose to answer YES to this question we will see that everything that was 

taught to us about the arithmetic of fractions in school actually follows BY PURE 

LOGICAL REASONING as CONSEQUENCES of these five beliefs. There is no need to try to 

come up with different models to try to explain different aspects of work with fractions. 

Everything follows from these five beliefs.  

 

So here is the best answer I have to the question: WHAT IS A FRACTION? 

 

Fractions are some kind of numbers that satisfy the basic five beliefs stated 

above (and satisfying all the usual rules of arithmetic too). Everything you want 

to do and understand about fractions follows from these five rules.  

 

Let’s see now how everything does indeed unfold from these five belies.  
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SOME FIRST CONSEQUENCES: 
 

Some might feel that we should add to our list of beliefs:  

 

“BELIEF 6”:    
a

b a
b

× =  

 

For example, it says 
5

3 5
3

× =  and 
1

7 1
7

× = . 

 

It need not be a new belief. It follows from the first five as follows: 

 

(by Belief 5)

1

(by Belief 3)
1

(by Belief 2)

a b a
b
b b

b a

b

a

a

×
× =

×
=

×

=

=

 

 

So far all our numerators have been positive whole numbers. What if the numerator is 

zero?  

What is the value of 
0

5
? 

 

In the pies per boy thinking of model 2 this is zero pies for five boys. This model suggests 

the answer is zero. BUT WE DON’T NEED TO RELY ON THE MODELS! 

 

Here’s a way, by logic, to see the value of 
0

5
: 

 

    

0 0 1

5 5

1
0 ( 5)

5

0

by Belief

×
=

= ×

=

 

 

Here we used, twice, the basic rule of arithmetic that any number multiplied by zero 

should be zero.  
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DIVIDING BY ZERO? A DENOMINATOR OF ZERO? 
 

“Belief 6” says that 
a

b a
b

× = . This provides a check to see if a fraction calculation is 

correct.  

 

For example, suppose I am having trouble computing 
20

4
. I think this is 3 . 

 

Now “Belief 6” says: 
20

4 20
4

× = . My guess of 3  is not right because 4 3 20× ≠ . 

 

In fact, in general, one checks whether or not a division problem is correct by 

performing multiplication. For example:  

 

6
3

2
=  is correct because 2  times 3  is indeed 6 . 

 

20
5

4
=  is correct because 4  times 5  is indeed 20 . 

 

83
11

9
=  is not correct because 9 times 11 is not 83 . 

 

18
180

0.1
=  is correct because 0.1  times 180  is indeed 18 .  

 

These are all just uses of “Belief 6.” (And remember … We’re no longer saying we have 

to stick with positive whole numbers!)  

 

A THINKING QUESTION:  

a) Cyril says that 
5

0
 equals 2 . Why is he not correct? 

b) Ethel says that 
5

0
 equals 17 . Why is she not correct? 

c) Wonhi says that 
5

0
 equals 887231243 . Why is he not correct? 

d) Duane says that there is no answer to 
5

0
. Explain why he is correct. 
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A SECOND THINKING QUESTION:   

Cyril says that 
0

0
 equals 2 . 

Ethel says that  
0

0
 equals 17 . 

Wonhi says that 
0

0
 equals887231243 . 

 

Why do they each believe that they are correct? 

 

What might Duane say here? 

 

 

To answer these questions … 

 

 

Notice that if 
5

2
0
= , as Cyril says, then we should have that 2  times 0  is5 , according to 

the check. This is not correct. In fact, the check shows that there is no number x  for 

which 
5

0
x= .  

 

 

On the other hand, Cyril says that 
0

2
0
=  and he believes he is correct because it passes 

the check: 2  times 0  is indeed zero.  But so too do 
0

17
0
=  and 

0
887231243

0
=  pass the 

check!  In fact, 
0

0
x=  passes the check for any number x . 

 

 

The trouble with 
0

a
 (with a  not zero) is that there are no meaningful values to assign to 

it, and the trouble with 
0

0
 is that there are too many possible values to give it! 

 

 

In general, most people would say that dividing by zero is “undefined.” There is no 

means to give either an answer that is consistent with the arithmetic. “Belief 6” 

suggests we can’t allow the denominator of a fraction to be zero.  
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FRACTIONS WITH NEGATIVE NUMERATORS AND 

DENOMINATORS 
 

Mathematically, “ 2− ” represents the opposite of “2 ”, in the sense that adding 2  and 

2−  together gives zero.  

 

The usual rules of arithmetic also allow us to think of 2−  as ( )1 2− ×  if we prefer. 

 

Here’s a confusing question: 

 

Are 
3

5

−
 and 

3

5
−  and 

3

5−
 the same fraction or are they all different as numbers? 

 

It is hard to answer this question in any of our models. (Is 
3

5

−
 the sharing of three anti-

pies to five boys, and 
3

5−
 the sharing of three pies to five anti boys? Huh?) 

 

But look, using ( )1a a− = − ×  twice we have: 

 

( )

( )

1 33

5 5

3
1 ( 5)

5

3
.
5

by Belief

− ×−
=

= − ×

= −

 

 

Also,  

( )
( )

3 13 3

5 5 1 5

− × −−
= =

× − −
 

by belief 3. 

 

 

This shows all three quantities are the same number. 
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People call writing 
a

b

−
 as 

a

b
− , and writing 

a

b−
 as 

a

b
− , as “pulling out a negative sign.”  

 

 

EXERCISE 21:  

a) What is 
a

b

−
−

? 

b) What is 
8 2

9 5

−
×
−

? 
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ADDING AND SUBTRACTING FRACTIONS 
 

Belief 4 allows us to add fractions with a common numerator:  

 

a b a b

N N N

+
+ =  

 

It was motivated by the pies of model 1. 

 

 

2 3 5

7 7 7
+ =

. 

 

We can apply this technique to a sum of more than two fractions. For example: 

 

4 3 8 4 3 8

10 10 10 10 10 10

7 8

10 10

15

10

3 5 3

2 5 2

 + + = + + 
 

= +

=

×
= =

×

, 

 

And we can do subtraction too as this is just the addition of the opposite! 

 

6 2 6 2

11 11 11 11

6 2

11 11

4

11

 − = + − 
 
−

= +

=

  

 

All is looking grand. 
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Except … How do we add fractions with no common denominator? 

 

What is 
2 1

5 3
+ , for example?  

 

Belief 3 comes to the rescue! 

 

Write 
2

5
 in a series of alternative forms using belief 3, and do the same for

1

3
: 

 

We notice two common denominators to see that the problem 
2 1

5 3
+  is actually the 

same as 
6 5

15 15
+ , which has answer 

11

15
: 

 

2 1 6 5 11

5 3 15 15 15
+ = + =

. 
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As another example: 

 
 

COMMENT: Of course one doesn’t need to list all the equivalent forms of each fraction 

in order to find a common denominator. If you can see a common denominator right 

away (or can think of a method that always works), go for it. 

 

EXERCISE 22: What is 
1 1

2 3
+ ? The answer is some number of sixths. How many sixths?  

 

EXERCISE 23: What is 
2 37

5 10
+ ?  

 

EXERCISE 24: What is 
1 3

2 10
+ ? 

 

EXERCISE 25: What is 
2 5

3 7
+ ? 

 

EXERCISE 26: What is 
1 1 1

2 4 8
+ + ? 

 

EXERCISE 27: What is 
3 4 7 3 49

10 25 20 5 50
+ + + + ? 
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Let’s do subtraction. 

 

EXERCISE 28: What is 
7 3

10 10
− ? 

 

EXERCISE 29: What is 
7 3

10 20
− ? 

 

EXERCISE 30: What is 
1 1

3 5
− ? 

 

EXERCISE 31: What is 
2 2 2

35 7 5
− + ? 

 

EXERCISE 32: What is 
1 1 1 1

2 4 8 16
− − − ? 

 

 

Here’s a good question! 

 

EXERCISE 33: Which is larger: 
5

9
 or 

6

11
? 

 

What is a good way to approach this? Perhaps write each fraction with a common 

denominator? 
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MULTIPLYING FRACTIONS 
 

Our five beliefs tell us how to multiply fractions. 

 

Compute 
2 4

3 7
× . 

 

By Belief 5 this equals 

2
4

3

7

⋅
.   (Recall: 

a xa
x
b b

× = .) 

 

By Belief 3 we can multiply the numerator and denominator both by 3without changing 

the fraction. This gives (using “Belief 6” along the way):  

 

2 2
4 4 3

2 43 3

7 7 3 7 3

⋅ ⋅ ⋅
⋅

= =
⋅ ⋅

. 

 

In effect we have simply produced a fraction with numerator the product of the original 

numerators, and denominator the product of the original denominators:  

 

2 4 2 4

3 7 3 7

⋅
× =

⋅
. 

           

The general multiplication rule for fractions we learn in early school days is a logical 

consequence of the beliefs! 

 

MULTIPLICATION RULE: 
a c ac

b d bd
× = . 

 

There is no need to try to “explain” this with number lines drawn on the sides of 

rectangular pies. 
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EXERCISE 34: Ibrahim was asked to compute:   

 

18 70

7 36
×  

 

and, within three seconds, said that the answer was 5 . He was right! How did he see 

this so quickly? 

 

EXERCISE 35: What is the value of 
39 14

35 13
× ?  

 

EXERCISE 36: Compute the following products. (Don’t work too hard!) 

 

a)  
3 1 2

4 3 5
× ×         b) 

5 7

5 8
×         c) 

88 541

88 788
×          d) 

77876 311

311 77876
×      

 

e) 
1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 10
× × × × × × × ×  

 

(Make good use of the fraction rule 
xa a

xb b
=  before you do any arithmetic!)  
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MIXED NUMBERS 
 

People like to name things (for reasons that are not always clear).  

 

     A fraction with a numerator smaller than its denominator is called a proper       

     fraction.  E.g. 
45

58
 is a proper fraction. 

 

     A fraction with numerator larger than its denominator is called an improper  

     fraction. E. g. 
7

3
 is an improper fraction. (In the 1800s, these fractions were    

      called vulgar fractions. They were considered common.)  

 

 

For some reason that doesn’t really make sense, improper fractions are considered, 

well, improper by some teachers, and students are made to write improper fractions as 

a combination of a whole number and a proper fraction.  

 

Consider, for example,
7

3
. If seven pies are shared among three girls, then each girl will 

certainly receive 2  whole pies, leaving one pie over to share among the three girls. 

Thus, 
7

3
 equals 2  plus 

1

3
. People write: 

 

7 1
2

3 3
=  

 

and call the result 
1
2
3

 a mixed number. (One can also write 
1

2
3

+ , which is what 
1
2
3

 

really means, but most people choose to suppress the plus sign.) 

 

 

QUESTION: We used model 2, pies per girl, to explain why 
7

3
 equals 

1
2
3

. How do we 

check this using only our five beliefs? 

 

 

 

 



 

© James Tanton 2014                 www.jamestanton.com  www.gdaymath.com  
 

40

Answer: Does 
1
2
3

 pass our “belief 6” check? 

 

 
1 1 3
2 3 2 3 6 6 1 7
3 3 3

   × = + × = + = + =   
   

 

 

So yes, 
1
2
3

 is 
7

3
. 

 

 

 

As another example, consider 
23

4
. The number 4  certainly “goes into” 23  five times 

and leaves a remainder of 3 , which is still be divided by four. We have:  

 

23 3
5

4 4
= . 

 

(And via our Belief 6 check: 
3 3

4 5 4 5 20 3 23
4 4

 × = × + = + = 
 

, as hoped.) 

 

 

EXERCISE 37: Write each of the following as a mixed number.  

(For example, 
32

5
 equals 

2
6
5

.)  

        a) 
17

3
         b) 

8

5
          c) 

100

13
          d) 

200

199
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Mathematically there is nothing wrong with an improper fraction and many 

mathematicians prefer improper fractions over mixed numbers.  

 

Consider, for instance, the mixed number 
1
2
5

. This is really 
1

2
5

+ .  

 

For fun, let’s write the number 2  as a fraction with denominator five: 

 

2 2 5 10
2

1 1 5 5

×
= = =

×
. 

 

(Do you see Beliefs 2 and 3 at play?)  So the number 
1
2
5

 is: 

 

1 10 1 11
2

5 5 5 5
+ = + = . 

 

We’ve written the mixed number 
1
2
5

 as the improper fraction 
11

5
. 

 

EXERCISE 38: Convert each of these mixed numbers back into proper fractions: 

       a)  
1
3
4

        b) 
1
5
6

          c) 
3

1
11

        d) 
1

200
200

 

 

 

COMMENT: Students are often asked to memorize the names “proper fraction,” 

“improper fraction” and “mixed number” so that they can follow directions on tests and 

problem sets.  But, to a mathematician, these names are not at all important. There is 

no “correct” way to express an answer – as long as the answer is mathematically 

correct!  

 

Just decide for yourself as you do your mathematics which type of fraction would be 

best to work with for your task at hand.  
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DIVIDING FRACTIONS 
 

Here is a nasty problem:   

 

2
7
3

 pies are to be shared among 
3

5
4

 girls. How many pies per individual girl 

does this yield?  

Technically, we could just write down the answer as 

2
7
3
3

5
4

 and be done!  (This is indeed 

the correct fraction for the problem!)  Is there a way to make this look friendlier? 

 

 

Recall the key fraction rule Belief 3:  

xa a

xb b
=   

 

Let’s multiply the numerator and denominator of our answer each by a convenient 

choice of number. Right now we have the expression: 

 

2 2
7 7
3 3
3 3

5 5
4 4

+
=

+
. 

Let’s multiply by 3 . (Why three?)  

 

2
7 3

21 23

93
155 3

44

 + ×  +  =
  ++ × 
 

. 

 

(Recall from “Belief 6” that 
a
b

b
×  equals a .) 

 

Let’s now multiply numerator and denominator each by 4 . (Why four?)  
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( )21 2 4 84 8 92

9 60 9 69
15 4

4

+ × +
= =

+ + × 
 

 

 

We now see that the answer is 
92

69
.  Sharing

2
7
3

 pies among 
3

5
4

 girls is the same as 

sharing 92 pies among 69 girls! 

 

 

 

As another example, consider 

1
3
2
1
1
2

.   

 

Multiplying the numerator and denominator each by 2  should be enough to make the 

expression look friendlier:  

 

11 1 3 23 3
6 1 722 2

1 1 1 2 1 3
1 1 1 2
2 2 2

 + ⋅+   + = = = =
+ + + ⋅ 

 

. 

 

 

EXERCISE 39: Make 

2
4
3
1
5
3

 look friendlier.     

 

 

EXERCISE 40: Make 

1
2
5
1

2
4

 look friendlier.     

 

EXERCISE 41: Make 

4
1
7
3

2
10

 look friendlier.     
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EXERCISE 42: Make 

3

7
4

5

 look friendlier. 

 

 

Without realizing it, we have just learned how to divide fractions.  

 

For example, let’s compute 
3 4

5 7
÷ . This is the fraction: 

 

3

5
4

7

 

 

Let’s multiply numerator and denominator each by 5 :  

 

3
5

35
4 20

5
7 7

×
=

×
 

 

Let’s now multiply top and bottom each by 7 : 

 

3 7 21

20 20
7

7

×
=

×
 

Done! 
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Let’s do another. Let’s consider 
5 8

9 11
÷ , that is: 

 

5

9
8

11

 

 

 

Let’s multiply top and bottom each by 9  and by 11 at the same time. (Why not?)  

 

5
9 11

5 119
8 8 9

9 11
11

× × ×
=

×× ×
 

 

(Do you see what happened here?)  

 

and so:  

5

5 11 559
8 8 9 72

11

×
= =

×
. 

 

 

EXERCISE 43: Compute each of the following: 

 

a)   
1 1

2 3
÷        b) 

4 3

5 7
÷           c)   

2 1

3 5
÷  

 

 

EXERCISE 44: Compute 
45 902

45 902
÷ . Do you see what the answer simply must be? 

 

 

EXERCISE 45: Compute 
10 2

13 13
÷ .  Any general comments about this one?  
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THINKING EXERCISE:   

 

Consider the problem 
5 7

12 11
÷ .  

 

Janine wrote:  

5 5
12 11

5 11 5 1112 12
7 7 7 12 12 7

12 11
11 11

× × ×
= = = ×

×× ×
 

 

and then stopped before completing her final step.  

 

 

a) Check each step of her work here and make sure that she is correct in what she 

did up to this point.  

 

 

Janine then exclaimed: “Dividing one fraction by another is the same as multiplying the 

first fraction with the second fraction upside down.”  

 

 

b) Do you see what Janine means by this from her example? 

 

c) Is she right? Is dividing two fractions always the same as multiplying the two 

fractions with the second one turned upside down? What do you think? 

 

 

Work out 

3

7
4

13

. Is the answer the same as 
3 13

7 4
× ? 

Work out 

2

5
3

10

. Is the answer the same as 
2 10

5 3
× ? 

Work out 

a

b
c

d

.  Is the answer the same as 
a d

b c
× ? 
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THINKING EXERCISE:  

 

Some teachers have students solve fraction division by rewriting expressions via a 

common denominator. For example, to compute:  

 

3 2

4 3
÷  

 

rewrite the problem as: 

9 8

12 12
÷ . 

 

The claim is then made that the answer to the original problem is 
9

9 8
8

÷ = . 

 

a) Does 
3 2

4 3
÷  indeed equal 

9

8
? 

 

b) Work out 
5 7

4 9
÷  via the method of this section, and then again by the method 

described above. Are the answers indeed the same?  

 

 

Why do you think this “common denominator method” works? 

 

 

THINKING EXERCISE:  

 

Work out 
12 3

15 5
÷  and show that it equals 

4

3
.  

 

Now notice that  

12 3 4÷ =  

15 5 3÷ =  

and  

12 3 4

15 5 3
÷ = . 

 

Is this a coincidence or does 
a c

b d
÷  always equal 

a c

b d

÷
÷

? 
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ALGEBRA CONNECTIONS 
(for those with upper high school mathematics experience) 

 

In an advanced algebra course students are often asked to work with complicated 

expressions of the following ilk:  

1
1

3
x

x

+
. 

 

We can make it look friendlier by following exactly the same technique of the previous 

section. In this example, let’s multiply the numerator and denominator each by x . (Do 

you see why this is a good choice?) We obtain: 

 

1
1

1

3 3

x
xx

x
x

 + ×  +  =
 × 
 

 

 

and 
1

3

x+
 is much less scary. 

 

As another example, given: 

1 1

a b

ab

−
 

 

one might find it helpful to multiply the numerator and the denominator each by a  and 

then each by b : 

 

2 2

1 1
a b

b aa b

ab a b a b

 − × ×  −  =
× ×

, 
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and for  

( )

( )

2

2

1
2

1

1
5

1

w

w

−
+

+
+

 

 

it might be good to multiply top and bottom each by ( )21w+ : 

 

( )

( )

( )
( )

2 2

2

2

1
2

1 1 2 1

1 1 5 15
1

w w

w

w

−
+ − +

=
+ ++

+

 

 

 

 

EXERCISE 46: Make each of the following expressions look less scary: 

 

a) 

1
2

1
1

x

x

−

+
 

 

b) 

1
5

1
x h

x h

+
+

+

 

 

c) 
1

1 1

a b
+

 

 

d) 

1 1

x a x

a

−
+  

 

e) 
2

1

s−
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MULTIPLYING AND DIVIDING BY NUMBERS 

BIGGER AND SMALLER THAN ONE 
 

People say that multiplying a quantity by a number bigger than one makes the answer 

bigger. Is this true?  

 

For instance, 
5

4
 represents more than one pie. Does multiplying 100 , for example, by 

5

4

give an answer bigger than 100?  

 

Well, yes: 

5 500
100 125

4 4
× = = . 

 

Does multiplying any number, let’s call it X , by 
5

4
 give an answer larger than X ? 

 

The answer is yes, and here it is good to write 
5

4
 as a mixed number, 

1
1
4

, to see why. 

(Ah … mixed numbers are good for something!)  

 

5 1
1

4 4

1
1

4

.

X X

X X

X more

 × = + 
 

= ⋅ + ⋅

= +

 

 

Yes, the answer is bigger than X . 

 

EXERCISE 47: Show that multiplying a number by 
8

5
 is sure to give a larger answer.  

 

EXERCISE 48: Show that multiplying a number by 
20

9
 is sure to give a larger answer. 
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Does multiplying a quantity by a number smaller than one makes the answer smaller?   

 

Consider 
4

5
, for instance. This represents less than one pie. Does multiplying 100  by it 

give a smaller answer?  

4 400
100 80

5 5
× = = . 

Yes!  

 

 

Does multiplying any number X by 
4

5
 give an answer smaller than X ? 

 

The answer is yes but we need to be tricky and write 
4

5
 as a mixed number in an 

unusual way.  

 

Notice that 
4 1

1
5 5
+ = , and so 

4 1
1

5 5
= − . Thus:  

 

4 1
1

5 5

1

5

 smaller than .

X X

X X

X

 × = − 
 

= − ⋅

=

 

 

 

EXERCISE 49: Show that multiplying a number by 
7

8
 is sure to give a smaller answer.  

 

EXERCISE 50: Show that multiplying a number by 
5

9
 is sure to give a smaller answer. 
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Now let’s consider dividing a number by a quantity smaller than one. For example, will 

100  divided by 
4

5
 give an answer smaller or larger than 100? Let’s see: 

 

100 100 5 500
125

4 4 4
5

5 5

×
= = =

×
 

 

The answer is larger. 

 

In general: 

5 5 5

4 4 4 4
5

5 5

X X X
X

×
= = = ×

×
 

and we know that 
5

4
X×  will be larger than X . (We did this two pages ago.)  

 

 

EXERCISE 45: Show that dividing a number X  by 
7

9
 will give an answer larger than X . 

 

EXERCISE 46: Show that dividing a number X  by 
8

5
 will give an answer smaller than X . 
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A BRIEF INTRODUCTION TO EGYPTIAN FRACTIONS 
 

(See THINKING MATHEMATICS! Vol 1: Arithmetic = The Gateway to All available at 

www.lulu.com for more. ) 

 

Scholars of ancient Egypt (ca. 3000 B.C.) were very practical in their approaches to 

mathematics and always sort answers to problems that would be of most convenience 

to the people involved. This led them to a curious approach to thinking about fractions.   

 

Consider the problem: Share 7 pies among 12 boys.  

 

Of course, given our model for fractions, each boy is to receive the quantity “
7

12
” of pie. 

This answer has little intuitive feel.  

 

But suppose we took this task as a very practical problem. Here are the seven pies:  

 
Is it possible to give each of the boys a whole pie? No. How about the next best thing – 

each boy half a pie? Yes! There are certainly 12 half pies to dole out. There is also one 

pie left over yet to be shared among the 12 boys. Divide this into twelfths and hand 

each boy an extra piece. 

 

 
 

Thus each boy receives 
1 1

2 12
+  of a pie and it is indeed true that

7 1 1

12 2 12
= + . 
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EXERCISE 53:  

a) How do you think the Egyptian’s might have shared five pies among six girls? 

 

 
 

 

b) How might they have shared 7 pies among 12 students? 

 

 

 

The Egyptians insisted on writing all their fractions as sums of fraction with numerators 

equal to 1. For example:  

 

3

10
 was written as 

1 1

4 20
+  

 

5

7
 was written as 

1 1 1

2 5 70
+ +  

 

That is, to share 3  pies among 10  students, the Egyptians said to give each student one 

quarter of a pie and one twentieth of a pie.  

 

To share 5  pies among 7  students, the Egyptians suggested giving our half a pie, and 

one fifth of a pie, and one seventieth of a pie to each student.  

 

 

 

EXERCISE 54: It is true that 
4 1 1 1

13 4 18 468
= + + . What does this say about how the 

Egyptians would have shared 4  pies among 13  girls? 
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Curiously, the Egyptians did not like to repeat fractions. Although it is obviously true 

that:  

2 1 1

5 5 5
= +  

 

the Egyptians really did think it better to give each person receiving pie piece as large as 

possible, and so preferred the answer:  

 

2 1 1

5 3 15
= +  

 

(even though it meant giving out a tiny piece of pie with that bigger piece).  

 

EXERCISE 55: Consider the fraction 
2

11
.  

a) Show that 
1

5
 is bigger than 

2

11
. 

b) Show that 
1

6
 is smaller than 

2

11
. 

c) Work out 
2 1

11 6
− . 

Use c) to write 
2

11
 the Egyptian way. 

 

 

EXERCISE 56: Consider the fraction 
2

7
. 

a) What is the biggest fraction 
1

N
 that is still smaller than 

2

7
? 

b) Write 
2

7
 the Egyptian way. 

 

 

EXERCISE 57: CHALLENGE  

 

a) Write 
17

20
 the Egyptian way. 

b) Write 
3

7
 the Egyptian way. 
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A CURIOUS FRACTION TREE  
 

Here is something fun to think about.  Consider the following “fraction tree:” 

 

 

 

Do you see how it works?  Do you see that each fraction has two “children”? The left 

child is always a number smaller than 1 and the right child is always a number larger 

than 1.  

 

Do you see how the box to the upper right gives the method for computing the two 

children of the fraction?   

 

a) Continue the drawing the fraction tree for another two rows. 

 

b) Explain why the fraction 
13

20
 will eventually appear in the tree. (It might be 

easier to figure out what 
13

20
’s parent is by first noticing that 

13

20
 is a “left child.”  

What is its grandparent? What is its great grand parent?) 

 

c) Explain why the fraction
13

20
 cannot appear twice in the tree. 

 

d) Will the fraction 
456

777
 eventually appear in the tree? Could it appear twice?  
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BRIEF SOLUTIONS 
 

1. 
2

2
 is two groups of 

1

2
. We have: 

 
 

4

2
 is four groups of 

1

2
. We have: 

 
 

2. a) 
1

6
=   

It is easy to divide a hexagon into six equal parts. 

 

b) 
6

6
=              

 

c) Octagon     

 

d)   is half the pie. 

 

3. Each “brick” represents 
1

72
. Thirty-five are shaded. We have 

1 35
35

72 72
× = . 

4. This is 
1 5

5
8 8

× = . 

5. This is correct thinking. 
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6. 
1

1
1
=  One pie per boy!         

7. 
5

5
1
=  Five pies for one (lucky) boy! 

8. Eight pies for eight pies gives one pie per boy. 

 

9.  3 pies, 2 boys. (Divide each pie into two parts. Each boy get three of those parts.)        

 

10. 8 pies, 3 boys (Divide each pie into three parts. Each boy gets eight of those parts.) 

 

11. 1
a

a
=  . An equal number of pies as boys gives one pie per boy. 

12. 
1876

1876
1

=  

13.
0

0
7
=   (Zero pie per boy.)         

14.  6  

 

15. Five pies for each half of a boy gives 10  pies for a whole boy. 

 

16. Four pies for each third of a boy gives12  pies for a whole boy. 

 

17. 1(E)     2(A)     3(A)    4(C)     5(B)     6(D)  

 

18. This is absolutely valid thinking all the way through. 

 

19. Divide first unit of the number line into five equal parts. Use one segment as a unit 

of measure to measure seven units to the right of zero. This gives a location on the 

number line between the 1 and 2  mark.   

 

20. This the same as question 19 except it is the portion of the number line extending to 

the left from zero. 

 

21. a) 
a

b
 (Multiply numerator and denominator each by 1− )     b) 

16

45
 

 

22. 
1 1 3 2 5

2 3 6 6 6
+ = + =       

 

23. 
2 37 4 37 41

5 10 10 10 10
+ = + =  
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24. 
1 3 5 3 4

2 10 10 10 5
+ = + =     

 

25.
2 5 14 15 29

3 7 21 21 21
+ = + =     

 

26. 
1 1 1 4 2 1 7

2 4 8 8 8 8 8
+ + = + + =  

 

27.
30 16 35 60 98 239

100 100 100 100 100 100
+ + + + =      

 

28. 
7 3 2

10 10 5
− =      

 

29. 
14 3 11

20 20 20
− =  

 

30. 
5 3 2

15 15 15
− =       

 

31.
2 10 14 6

35 35 35 35
− + =      

 

32. 
8 4 2 1 1

16 16 16 16 16
− − − =  

 

33. 
5 55

9 99
=  and 

6 54

11 99
=  so 

5

9
 is larger.     

 

34. 
18 70 18 7 10 10

5
7 36 7 18 2 2

× × ×
= = =

× × ×
 

 

35. 
3 2 6

5 1 5

×
=

×
 

 

36. a) 
3 1 2 1 2 1 1 1

4 3 5 4 5 2 5 10

× × × ×
= = =

× × × ×
  b) 

5 7 7 7
1

5 8 8 8
× = × =    c) 

541

788
  d) 1 e) 

1

10
  

 

37.a) 
2

5
3

   b) 
3
1
5

   c) 
9

7
13

   d) 
1

1
199
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38. a) 
13

4
 b) 

31

6
  c) 

14

11
  d) 

40001

200
 

 

39. 

1
4 3

12 1 133
1 15 1 16
5 3
3

× +
= =

+×
 

 

40. 

1
2 5 4

40 4 445
1 40 5 45

2 5 4
4

× ×
+

= =
+× ×

 

 

41.  

4
1 7 10

70 40 1107
3 140 21 161

2 7 10
10

× × +
= =

+× ×
 

 

42.  

3
7 5

157
4 28

7 5
5

× ×
=

× ×
 

 

43.  a) 
3

2
  b) 

28

15
  c) 

10

3
    

 

44. 1 1 1÷ =  

 

45. 

10

1013 5
2 2

13

= = . Is it a coincidence that 
/

/

a N a

b N b
= ?       

 

46. a) 
2 1

1

x

x

−
+

  b) 
( ) ( )

1 5
1 5

1

x h
x h

+ +
= + +   c) 

ab

b a+
   

d) 
( )
( ) ( ) ( )

1x x a a

ax x a ax x a x x a

− − −
= = −

− − −
    e) 

2 2
2

2 2 1

s s
s

s s−
= =  
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47.  
8 3 3

1
5 5 5
X X X X X more

 ⋅ = + = + = + 
 

 

48. 
20 11 11

1
9 9 9
X X X X X more

 ⋅ = + = + = + 
 

 

49. 
7 1 1

1
8 8 8
X X X X less than X

 ⋅ = − = − = 
 

 

50. 
5 4 4

1
9 9 9
X X X X less than X

 ⋅ = − = − = 
 

 

51.
9 9

7 7 7

9

X X
X more than X= = ⋅ =          

52. 
5 5

8 8 8

5

X X
X less than X= = ⋅ =  

 

53. a) 
1 1

2 3
+  Half a pie and a third of a pie to each girl 

b) 
1 1

2 12
+  Half a pie and a twelfth of a pie to each girl. 

 

54. One quarter of a pie and one 18
th

 of a pie and one 468
th

 of a pie to each girl. 

 

55.a) 
1 11

5 55
=  and 

2 10

11 55
=  so 

1

5
 is larger.   b) 

1 11

6 66
=  and 

2 12

11 66
=  so 

1

6
 is smaller. 

c) 
2 1 12 11 1

11 6 66 66 66
− = − =   d) 

2 1 1

11 6 66
= +  

 

56. a) 
1

4
  b) 

2 1 1

7 4 28
= + . (Other answers are possible.) 

 

57. a) 
17 1 1 1

20 2 3 60
= + + (Other answers are possible.) b) 

3 1 1 1

7 3 11 231
= + +  (Other answers 

are possible.) 

 

 

FRACTION TREE: Every reduced fraction does appear in the tree exactly once. 

 

  



 

© James Tanton 2014                 www.jamestanton.com  www.gdaymath.com  
 

62
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HONESTY STATEMENT:  

THE REAL REASON WHY FRACTIONS ARE SO HARD 
 

[This essay appears as the March 2014 CURRICULUM MATH essay at 

www.jamestanton.com/?p=1072 .] 

 

Let me just state at the outset that fractions are hard! Mankind has struggled with them 

for centuries - and rightly so - and we individually struggle with them for years, if not 

decades, and again, rightly so! It is completely unrealistic - unfair even - to expect 

students to be comfortable with fractions by the end of grade school, by the end of 

middle school, or even by the end of high school. If we think about how fractions are 

introduced and used throughout the standard curriculum, matters are fundamentally 

confusing and contradictory.  
 

In the early grades, fractions are often introduced as pieces of pie, or parts of some 

other favorite whole.  

 

 
 

This is often motivated through sharing:  
 

If 6  pies are shared equally among 3  boys, how many pies does each individual boy 

receive? 

 

We write: 
6

2
3
= pies per boy. 

 

If 1 pie is shared equally between 2  boys, how much does each individual boy receive?  

 

We write: 
1

2
=  half a pie per boy. 
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A Point of Confusion: So what is a fraction? Is it an amount of pie or an amount of pie 

per boy? In my science class we are very fussy about units. What are the units here? 
 

We have right off the bat two slightly different models for what a fraction is.  
 

Model 1: A fraction is an actual amount of pie one can physically handle. 

Model 2: A fraction is a proportion of pie per boy.   
 

Often these models are presented as though they are interchangeable. But there is 

something unsettling, something hard to articulate, about doing this. Those who think 

like scientists feel particularly unsettled.  
 

Nonetheless, each of these models is good at motivating certain features we feel ought 

to be true about fractions. 
 

Model 1 is good for motivating the basic addition of fractions  

If I am handling concrete pieces of pie, then drawing pictures of the following ilk feels 

good and right:  

 

This motivates our belief about how we should add fractions: 
2 3 5

7 7 7
+ = . Here we are 

adding sevenths as though we are adding apples. 
 

[Model 2, on the other hand, is very confusing here: What does 
2 3

7 7
+  mean? If 2  pies 

are being shared among 7  boys, and 3pies are being shared among 7 seven boys, is 

that5  five pies being shared among 14  boys? Or is it the same seven boys?]  

 

Model 2 is good for motivating several fundamental fraction beliefs 

In this model 
a

b
 represents the amount of pie an individual boy receives when a  pies 

are distributed among b  boys. 
 

Question : What’s 
10

10
? This is ten pies being shared equally among ten boys. That’s one 

pie per boy. 
10

1
10

= . 

Question: What’s 
10

1
? That’s ten pies being given to one boy. (Lucky boy!) That’s ten 

pies per boy: 
10

10
1
= .  
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These suggest, in general,  that 1
a

a
=  and 

1

a
a= . 

 

 

Suppose we are sharing a  pies among b  boys. What happens if we double the number 

of pies and double the number of boys? Nothing! The amount of pie per boy is still the 

same:  

2

2

a a

b b
= . 

 

For example, as the picture shows, 
6

3
 and 

12

6
 both give two pies for each boy. 

 

              
 

Tripling the number of pies and tripling the number of boys does not change the final 

amount of pie per boy, nor does quadrupling each number, or one-trillion-billion-tupling 

the numbers!   
 

6 12 18

3 6 9
= = =L  = two pies per boy 

 

This leads to believe, in general, 
xa a

xb b
=  (at least for positive whole numbers a , b , and 

x ).  
 

A Point of Confusion: Fractions are particularly confusing to young students because 

they are the first type of number they encounter that are not represented in unique 

ways. For example, 
15

20
 and 

9

12
 are the same number even though completely different 

symbols are being used each time to represent it. 
 

Comment: One can motivate the fraction belief 
xa a

xb b
=  using model 1. (Does that 

model also motivate
1

a
a= ?)  

 

 

 
WHERE BOTH MODLES FAIL 
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In model 1 it makes sense to add pie.  

 
What does it mean to multiply pie? 

 
 

And I can’t even begin to imagine what it means to multiply pies per boy!  
 

After teaching students that fractions are related to pie, it is not uncommon for a 

curriculum to change track and introduce a third model for fractions, one that let’s go of 

the pie model, but allows for the multiplication of fractions.  This is usually done without 

comment or mention, as though it is “obvious” we are still talking about the same 

objects. 
 

Model 3: Fractions are points on the number line (and so are numbers in their 

own right).  
 

This is often motivated in a model 2 kind of way: If I divide the unit interval into three 

equal parts, what pieces do I see? 
 

 

The location labeled 
2

3
 is confusing.  

We could go back to our model 1 thinking and add pieces of string-like pie:  

 

 

But is 
2

3
a length of string or a point? 

 

Maybe model 3 should be modified: 
 

Model 3’: A fraction is a point on the number line, but it actually represents a 

length – namely the distance between it and the zero point. 
 

A Point of Confusion: Okay. What about 
7

3
? Is that 

1
7

3
× , the unit of 

1

3
 added together 

seven times,  or is it the result of dividing a length of seven into three equal parts? I am 

meant to believe these are the same. Is it obvious that they are?  



 

© James Tanton 2014                 www.jamestanton.com  www.gdaymath.com  
 

67

 

 

Assuming we can get past starting hick-ups … 
 

 

In model 3'  fractions are lengths and “multiplying lengths” has geometric meaning: we 

call that a computation of area. So let’s use area to motivate the multiplication of 

fractions.  (Poor students who are still thinking pie from the previous year!)  
 

 

Let’s compute
4 2

7 3
× as an area problem.  

 

 

Start with a square and divide one side-length into sevenths and the other side-length 

into thirds and mark off the 
4

7
 and 

2

3
 positions. (Just as though the sides of the squares 

are unit lengths on the number line.)  

 

 

The product 
4 2

7 3
×  is the area of the shaded region shown.  

 

But we see that the whole square is divided into 21  pieces in all and we’ve shaded 8  of 

them. This is
8

21
 of pie.  

 

HANG ON! I thought we weren’t using the pie model!  (So we do want students to think 

of the pie model from last year at the same time?) 

 

 

 

 

 

 
NO ONE MODEL DOES IT ALL 
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The reason why fractions are hard is because they are fundamentally an abstract 

concept. We can model them in different contexts, but no single model will capture all 

the features we feel hold true for these numbers called fractions.  
 

Multiplication of fractions makes no sense in the concrete pie model 1. But it might 

make sense if we feel easy about a mix of models 3 and 1.  
 

The addition of fractions is hard to understand in pie-per-boy model 2. (How do you 

think through
2 4

5 3
+ ?).  

But addition does make sense in model 3 – just add lengths of string together. 
 

But model 3 has its limitations in adding fractions: Okay, I can see what to do 

geometrically to find the point 
2 4

5 3
+ , just lay one length after the other.  But what do I 

do to actually compute its value? 
 

We present many different models of fractions to students throughout their school 

years, each with its limitations. And each time we say “This is what a fraction is.” But 

then we abandon the model as soon as we hit a wall (and we always shall hit walls) and 

switch to a new model and say there: “This is what a fraction is.”  
 

Each model is like a blind man feeling an elephant. Each speaks a truth: “An elephant is 

a flat expanse of leather” (feeling its belly). “An elephant is a hard bone” (feeling the 

tusk). “An elephant is a length of rope” (feeling its tail). But no model actually says what 

an elephant is in totality. We’ve give students different aspects of a truth, but they feel 

contradictory, hazy at best. 
 

 

 
WHAT IS THE TRUTH 

  

As a mathematician I really don’t know what a fraction actually is. From a study of 

abstract algebra I would just say that a fraction is a pair of integers a  and b , with b  

non-zero, usually written above and below a vinculum,
a

b
, with two different 

expressions 
a

b
 and 

c

d
 deemed equivalent if ad bc= . (Mathematicians formally define 

what they mean by “equivalent” and what it means to have a whole class of objects 

deemed equivalent – an “equivalence class.”) That is, mathematicians just use what 

they feel is intuitively true and turn that into the definition and thereby side-step the 

whole question as to what a fraction actually is! 
 

 

 

SO WHAT TO DO FOR STUDENTS? 
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I am honest with my (middle- and high-school) students. I tell them that I don’t know 

what a fraction actually is, and I invite a discussion about all the things they’ve seen and 

have been told about what fractions are.  The pie model invariably comes up, as does a 

sharing model, and the idea of points on the number line. We honestly talk about how 

helpful/relevant each model is – up to a point – and how each model breaks down, just 

as I’ve described in this essay.  We talk about whether or not these models are 

“obviously” equivalent – are they talking about the same things or different things? We 

wonder if each model is feeling a different part of an elephant. And we conclude in the 

end that we none of us really knows what a fraction actually is. 
 

But during this discussion we do identify key features of fractions, as suggested by the 

various models, that seem intuitively right and natural.  
 

For example, we all readily agree that the following two statements certainly feel right: 
 

BELIEF 1:   1
a

a
=  

for each positive whole number a . 
 

BELIEF 2:   
1

a
a=  

for each positive whole number a . 
 

From the basic pie model, adding fractions of like denominator feels natural and right 

too: 
 

BELIEF 3:  
a b a b

N N N

+
+ =  

for whole numbers a , b , and N . 
 

From pies per boy, we also have that the following feels natural and right. (It explains 

why 
8 4

10 5
= , for example, and so seems important.) 

 

BELIEF 4: 
ax a

bx b
=  

for positive whole numbers a ,b  and x . 
 

At this point, we don’t have any fundamental beliefs that mention multiplication. I press 

one more idea, one from the pies per girl model.  
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Suppose we share a  pies among b  girls. (Each girl currently gets 
a

b
 pie per girl. ) How 

could we double the amount of pie each girl gets? Answer: Just double the amount of 

pie! 
 

We have:   
2

2
a a

b b
= × . 

 

(This really is saying something: doubling the amount of pie doubles the amount of pie 

per girl.)  
 

As there is nothing special about the number two here, this suggests: 
 

BELIEF 5: 
a xa

x
b b

× =  

for positive whole numbers a ,b  and x . 
 

So the models we experience from grade-school do at least develop an intuitive base for 

these things we feel exist and are called fractions. And I’ve pulled out here five basic 

beliefs that feel particularly fundamental and right.  
 

Continuing to be honest with my students I ask: 
 

Do these beliefs feel so fundamental and so right that you think they should hold for all 

types of numbers – not just positive whole numbers? Do you want to play the game of 

exploring the full logical consequences of these beliefs and see where they take us? 
 

I admit we still haven’t said what a fraction is – we can’t – but we’ve at least pinned 

down five pieces of their mathematical behavior.  
 

And the beauty of these five basic properties is that all the remaining properties of 

fractions that feel familiar to us follow logically from them! 

From beliefs 5, 4 and 2 we can prove, for example, that 
3

7
7

× , equals 3 . (And in general 

that 
a

b a
b

× = .) 

  

We can use beliefs 4 and 3 to figure out the mathematics of adding fractions: to compute 

3 6

7 19
+ , for example, as a consequence of these beliefs. 

 

We can see how to use beliefs 5 and 4 lead us to multiplying fractions, to compute 

3 6

7 19
×  in a snap, just as an mathematical consequence of the beliefs. 
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We can divide fractions using belief 4 and make the age old rule “to divide, multiply by 

the reciprocal” obvious and obsolete! (No need to ever say or even think it!) 

 

We can explain why 
3

8

−
 , 

3

8
−  and 

3

8−
 are all equivalent, using beliefs 4 and 5.  

 

We can explain why 
5

0
 has to be undefined and 

0

0
 must be too for a different reason.  

 

And so on! 

 

Actually, everything we usually wonder about and want to do mathematically with 

fractions can be explained and justified as logical consequences of these five basic 

beliefs! 
 

So, here’s my story of fractions for students. During grades K-6 we do, of course, 

develop an intuitive understanding of fractions and through concrete models, “parts of 

wholes,” and develop some of the mathematics that seems to be appropriate for those 

models. (Getting to the number of line and thinking in terms of “units of thirds” or 

“units of fifths,” for example, is particularly helpful).  
 

Then, sometime in grade 7 – 12, with a number of models in our minds from the past, 

we take a moment to reflect on our experiences and come to realize that, actually, it is 

not clear how all these models “hang” together.  We let everything unravel in our 

reflections, and we explore the deficiencies of the models both individually and as a 

collective whole. Our job now is to be honest about fractions and admit that actually no 

one model captures everything we like to believe about them and how they behave.  
 

This then begs the question:  So … what do we believe about fractions and how they 

should behave?  
 

We’re then upfront about matters and just list our basic beliefs and call them what they 

are: beliefs! 
 

And with the five particular basic beliefs I’ve listed pinned down, we marvel at the 

delight of seeing everything we were taught about the mathematics of fractions just 

unfold as a series of logical consequences of these basic beliefs. 

 

And if you find a concrete model in which those five beliefs happen to apply  - in 

thinking about lengths on a number line, or in thinking about sharing quantities - then 

all those mathematical consequences apply to that model too. (And we have to keep in 

mind that each model will be deficient, and so it will be hard, if not meaningless, to 

interpret some of the mathematical consequences within that model.)  
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SO … HOW DOES EVERYTHING FOLLOW FROM THOSE FIVE BASIC BELIEFS? 

 

Rather than let this essay become a tome, let me refer you to: 

  

www.jamestanton.com/?p=1461  

(WHICH IS THIS VERY SET OF NOTES!)  

 

for a piece that goes through all those details. Or better yet … Can you figure out for 

yourself the mathematical logic that explains all the ideas mentioned in the previous 

page?  
 

I find that middle-school and high-school students enjoy this work. The honest 

admission that no one, including them, really is meant to “get” fractions from their early 

introductions to them is an incredible emotional relief. The fractions are abstract is the 

truth, and students can so handle the truth! 
 

 

 


