
 

 

 

 

ESSAY NUMBER:  7
 

Teachers and schools can benefit from the 

chance to challenge students with 

interesting mathematical questions that are 

aligned with curriculum standards at all 

levels of difficulty. (From amc.maa.org.) 
 

… and do so within curriculum and daily 

classroom-practice demands. This is the 

seventh Curriculum Inspirations essay to 

illustrate just how.  
 

Ask any scientist or mathematician what it 

takes to make true, significant progress with 

a research question and most often the 

answer is tenacity, patience, perseverance, 

deep care and consistency of thought, the 

confidence to learn from false leads (which 

means one must follow leads, even the false 

ones!) and plugging on day after day, week 

after week, month after month. One does 

this until a story of some kind emerges, even 

if that story goes against preconceived 

notions! 
 

What impression do we give students on the 

matter of mathematical pursuit? All answers 

are pre-known (they are in the back of the 

book), all questions are to be answered with 

speed (quizzes, tests, exams are all timed), 

and all contexts point to a pre-described 

story of a mathematical theme. We give the 

impression that mathematics is “pre-set” 

enterprise. Much of this structure, of course, 

is appropriate and necessary at the K-12 

level – there are skill sets we want students 

to master – but the national STEM initiative 

is asking for more. We must plant the seeds 

of thinking needed for the true pursuit of the 

sciences and mathematics.  
 

 

 

In this essay we work on one particularly 

scary and complex question. The big 

message/theme is: 
 

    PERSEVERANCE    
 

A single MAA AMC Question for  

the Classroom: 

One way to model tenacity and perseverance 

for our students is to make intentional use 

those occasional five- or ten-minute loose 

moments at the end of a class. Use them for 

a multi-week conversation!  
 

Start with the MAA AMC question on the 

next page. Share it and start simply by 

asking for initial reactions, nothing more. 

This models the very important, first step to 

problem -solving:  
 

STEP 1: Read the question, 

have an emotional reaction to 

it, take a deep breath, and 

reread the question. Have 

another emotional reaction. 
 

Later write the question on poster-board and 

pin it up on the classroom wall. Let students 

mull on the question themselves over the 

following days, and pick up class discussion 

on the topic only when the next task-free 

moment happens to occur. Really do let this 

one mathematical investigation extend over 

weeks. Model the research experience! 
 

Record conversation thoughts and results as 

on the poster too. (Let the organic process of 

mathematic thinking be on full, joyous 

display.) At the end, organize those thoughts 

into one clean, swift, elegant, pride-full 

presentation of ideas. 

 

CURRICULUM INSPIRATIONS 
TIDBITS FOR THE CLASSROOM INSPIRED BY MAA 

AMERICAN MATHEMATICS COMPETITIONS 
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Here it is: Question 25 from the 2011 MAA 

AMC 10A competition. It is the final 

question, which means the competition 

designers themselves consider it to be 

mighty challenging!  
 

Let R be a square region and 4n ≥ an 

integer. A point X  in the interior of R  is 

called n -ray partitional if there are n rays 

emanating from X  that divide R  into n  
triangles of equal area. How many points 

are 100 -ray partitional but not 60 -ray 

partitional? 
 

WHOA!  

 

Here is how a multi-week discussion might 

evolve. (Don’t force this particular sequence 

of thoughts. Let the give-and-take of 

conversation with your students dictate your 

class’s flow of ideas, false leads and all.)  
 

THE FIRST FIVE/TEN MINUTE 

CLASSROOM MOMENT: 

I do mean it: Let the first experience be one 

of acknowledging emotions and reactions. 

Truly honor those emotions by writing them 

on the poster-board. (Their validation really 

is the key first step to making progress.)  
 

My emotional reaction was “WHOA!”  
 

Other reactions might be:  
 

     “Yick!”         “Oh heavens.”    
 

      “I don’t have a clue what any of it  

                                                  means.”      

       “Who cares?”      “Scary.”    
 

       “Who invents such things to torture  

                                              students?”    
 

       “Will this be a question on our test?”   
  
      “I’m up for it. Bring it on! (But honestly  

       I have no idea what to do!)”  

*** 
 

THE NEXT FEW FIVE/TEN MINUTE 

CLASSROOM MOMENTS: 
 

Maybe a week has gone by and nerves have 

calmed a little. We might be ready to 

attempt the question.  

 

 
STEP 2: Reread the question. 

Try to make sense of some of 

the words in the question. 

Perhaps draw a picture.  
 

As we saw in ESSAY 4 we saw that 

drawing a picture is a powerful problem-

solving technique. 
 

Alright, let’s go through the question, 

drawing a picture as we go along, making 

sure we understand the words we encounter. 

(Or perhaps we’ll just skip any parts that 

seem too scary. It is okay to be human!) 
 

     Let R be a square region and 4n ≥ an  

     integer. 
 

Okay we have a square: 
 

 
 

      A point X  in the interior of R ...   
 

and a point inside. 
 

 
 

     … is called n -ray partitional if there  

     are n rays emanating from X  that  

     divide R  into n  triangles of equal  
     area 
 

Oh scary!  Deep breath. 
 

Parts of this make some kind of sense. We 

have “rays” – I guess that just means lines – 

coming from X making triangles.  
 

There is some extra detail about area.  
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So our job, basically, is to draw lines from 

X  and make triangles.  
 

 
Notice that we need the four lines that 

connect X  to each corner of the square. 

That feels important-ish (maybe). 
 

     … that divide R  into n  triangles of   
     equal area. 
 

Okay, we want all the triangles we make to 

have the same area. 
 

     How many points are 100 -ray  

     partitional but not 60 -ray partitional? 
 

That’s too scary for me to think about! Let’s 

ignore it. (Yep. I am human!) 
 

Righteo. So we’ve gotten to the point that 

we know that “n -partitional” is about n  
lines (rays) coming from the point making 

triangles of equal area.  
 

I don’t know why, but I feel like asking: If 

there are n  lines, are there alson triangles? 
 

*** 

THE NEXT FEW FIVE/TEN MINUTE 

CLASSROOM MOMENTS: 

Continuing to ignore the scary part of the 

question, let’s ask:  
 

   What feels significant about the set-up of    

    the problem?  
 

We might all answer: That the triangles we 

make have the same area. 
 

This suggests another problem-solving 

strategy: 
 

List all that you know that 

could be relevant to the 

issue at hand.  

 

What do we know about the areas of 

triangles? Certainly:  

1

2
area base height= × × . 

(We might also know some more 

sophisticated formulas: ( )1 / 2 sinA ab θ=  or 

Heron’s formula, ( )( ) ( )A s s a s b x c= − − − , 

but it feels unlikely we would want to 

analyse angles in these triangles or their 

individual perimeters.) 
 

Okay, one piece of information. Not much 

to play with. Oh well. 
 

Can we glean anything from this formula for 

the triangles we have?  
 

Look at two neighboring triangles. They are 

meant to have the same area.  

 
Epiphany: Two triangles with bases on the 

same side of the square have the same 

height. To have the same area, they must 

also have the same base length. 

(Well, it kind of feels like an epiphany.) 
 

In fact, all the triangles on any one side of 

the square have the same height, and so all 

must have the same base lengths! 

This definitely feels important! 
 

Common Core Connection:  
CCSS-M standard 6-G-1 asks students to 

find the areas of triangles and 7-G-6 has 

students analyse the areas of figures 

composed of triangles. (See the end of the 

essay for more on this!) 
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THE NEXT SEVERAL FIVE/TEN 

MINUTE CLASSROOM MOMENTS: 
 

It feels compelling to start naming things.  
 

We are meant to have n  triangles. Suppose 

we have a  yellow triangles to the left, b  
red triangles in the bottom section, c  blue 

triangles to the right, and d  pink triangles 

on top. We have: 
 

a b c d n+ + + =  
 

I’d hate to introduce any more variables into 

the problem (we’ve already got five!) I 

suppose we could call the side-length of the 

square s , but would it hurt to assume that 

we’re dealing with a square of side-length 1 
unit?  
 

Common Core Connection:   
Suppose someone was thinking that the side-

length was 8 inches.  
 

Fine. But let’s now declare a new unit of 

length called a “flooble,” with one flooble 

just happening to be a length of eight inches. 

In this setting, our square is now indeed 1 

unit wide! (And if later we ever want to 

convert lengths back into inches, all we need 

do is multiply our answers in floobles by the 

scale factor of 8 . For example, a length of 

3.5  floobles is a length of 28  inches.)   
 

There is no problem then in assuming that 

the side length of the square is 1 unit. 
 

This is a sophisticated way of thinking about 

ratio and proportion: “a change of unit is 

equivalent to a change of scale.” CCSS-M 

grade six and seven standards 6-RP and 7-

RP address the topic of scale, ratio and 

proportions directly, but the idea mentioned 

here offers a sophisticated way for high-

school students to revisit this topic.  

 

The a  yellow triangles each have the same 

base length. Since the square is 1 unit wide, 

this base length is 
1

a
.  

These yellow triangles also all have the 

same height. It seems another variable is 

inevitable.  
 

Let’s call the height of the yellow triangles 

x  (though, in our picture, this height is 
horizontal!). We might as well give the 

height of each red triangle a name as well, 

say y . 

 
Thankfully we don’t need any more names! 

The height of each blue triangle is 1 x−  and 

each pink triangle 1 y− . 
 

I’ve forgotten. Why are we naming things? 
 

Well, we never had a reason other than it felt 

like the thing to do. We’re still just trying to 

get a feel for things, seeing if anything leads 

to what seems like a meaningful path.  
 

We can link things back to our epiphany,  

which was all about areas. Let’s write: 

 

( )

( )

1 1

2

1 1

2

1 1
1

2

1 1
1

2

yellowtriangle

red triangle

blue triangle

pink triangle

area x
a

area y
b

area x
c

area y
d

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅ −

= ⋅ ⋅ −

 

 

All these areas are meant to be equal in 

value. This gives us lots of algebra.  
 

(Is that good or bad?)  
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For example, the first and second areas 

being equal give 
x y

a b
=  which says: 

a
x y

b
= .  

The second and fourth area formulas being 

equal will give an equation just for y , in 

terms of a , b , c  and d .  And from 

a
x y

b
=  we could then find a formula for 

x . And so on. 
 

Before launching into this, let’s pause and 

ask: Do we want to get stuck in a morass of 

algebra? Would having formulas for x  and 

y  in terms of the numbersa , b , c  and d  

be helpful? 

*** 

THE NEXT SEVERAL FIVE/TEN 

MINUTE CLASSROOM MOMENTS: 
 

I am nervous wading through lots of 

equations with many symbols (a , b , c , d , 

x , y  and n !). But I don’t see what else to 

do. 
 

When stuck, reread the 

question.  
 

I am reminded that we ignored the actual 

question part of the question!    
 

     How many points are 100 -ray  

     partitional but not 60 -ray partitional? 
 

This still feels scary. 
 

When stuck, do something! 
 

Okay, let’s just take one part of this, the 

“100 -ray partitional” piece. What would 

100  rays look like?  (I am just doing 

something!)  
 

The obvious things to draw would be 25  
rays in each section of the square, 

25a = , 25b = , 25c = , 25d = , and have 

a completely symmetrical picture: 25 

triangles of each colour.  

 

 

 

From 

     yellowtriangle blue trianglearea area=  

we get: 

 ( )
1 1 1 1

1
2 25 2 25

x x⋅ = ⋅ −  

 or 

 1x x= −  

and so 
1

2
x = . Also, the red and pink 

triangles having equal areas gives 

1y y= − , and so 
1

2
y = .So for 

25a b c d= = = = , the point X  must be 

half way to the right and half way up. That 

is, X must be the center point of the square. 

Hmm. 
 

What if we tried some asymmetrical 

numbers: 10a = , 20b = , 30c = , 

40d = , perhaps?  
 

The equation:  

 ( )
1 1 1 1

1
2 10 2 30

x x⋅ = ⋅ −  

gives 
1

4
x =  and the equation: 

  ( )
1 1 1 1

1
2 20 2 40

y y⋅ = ⋅ −  

 gives 
1

3
y = . (Check these!) The point X  

is one-third over and one-quarter up. 
 

It seems that knowing the numbers 

, , ,a b c d  will pin down where the point X  

has to be.  
 

     How many points are 100 -ray  

     partitional but not 60 -ray partitional? 
 

There has to be something about the places 

for X  that work for “100 ” but don’t work 

for “60 .”  
 

I don’t want to keep trying random 

examples of numbers that add to 100  and/or 

60 . I think we do need actual formulas for 

x  and y .  

 

Let’s do the algebra! 

*** 
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THE NEXT SEVERAL/MANY 

FIVE/TEN MINUTE CLASSROOM 

MOMENTS: 
 

Okay, we have the equations  
 

( ) ( )

1 1 1 1

2 2

1 1 1 1
1 1

2 2

yellow red

blue pink

area x area y
a b

area x area y
c d

= ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ − = ⋅ ⋅ −

 

All four area formulas have the same value. 

 

To get a formula for x  we can use 

( )
1 1 1 1

1
2 2

x x
a c
⋅ = ⋅ −  . This reads 

cx a ax= −  and so: 
a

x
a c

=
+

. 

From ( )
1 1 1 1

1
2 2

y y
b d
⋅ = ⋅ −  we get: 

b
y

b d
=

+
. 

 

While we are at it, from 
1 1 1 1

2 2
x y

a b
⋅ = ⋅  

we get 
x a

y b
= .  Hang on! This is weird!  

We just worked out x  and y  so this reads: 

 

a

aa c
b b

b d

+ =

+

 

and simplifying gives: 

 a c b d+ = + .   (Check this!)  
 

Let’s keep setting two equations equal to 

each other and see what more we can learn. 

(This seems a neat thing to try!)  
 

Exercise: There are ten pairs of formulas to 

set equal to each other. (Why ten?). Check 

them all and verify that they yield the same 

information we already have. The remaining 

equations turn out to be redundant. (One 

doesn’t know this until one actually checks!)   
 

 

 

 

 

In summary we have: 

 

a
x

a c

b
y

b d

a c b d

=
+

=
+

+ = +

 

 

We also shouldn’t forget: 
 

 a b c d n+ + + = . 
 

[By the way we lucked out with our choice 

of 10a = , 20b = , 30c = , 40d = . Here 

a c+  happens to equal b d+ . If we chose 

values for which this didn’t hold, we might 

have been in a pickle! (Care to try some 

“bad” numbers and see what happens?)] 

 

Common Core Connection: It is clear we 

are connecting with the CCSS-M high-

school standards A-CED, creating 

equations, and A-REI, reasoning with 

equations and inequalities.  
 

*** 

THE NEXT SEVERAL/MANY 

FIVE/TEN MINUTE CLASSROOM 

MOMENTS: 

So what? 
 

When stuck, reread the 

question.  
 

Okay … How many points are 100 -ray 

partitional but not 60 -ray partitional? 
 

If X  is 100 -partitional, what do we know? 
 

Well … 

 100a b c d+ + + =  
 

and X  lies at the position with: 

 ,
a b

x y
a c b d

= =
+ +

  

  

We also know a c b d+ = + . 
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If X  is 60 -partitional, what do we know? 
 

Well … 

 60a b c d+ + + =  
 

and X  lies at the position with: 

 ,
a b

x y
a c b d

= =
+ +

  

  

We also know a c b d+ = + . 
 

The question wants us to count how many 

X s work for 100a b c d+ + + =  but not 

for 60a b c d+ + + = . Yeesh! 
 

I am stuck. 

 

*** 

THE NEXT SEVERAL/MANY 

FIVE/TEN MINUTE CLASSROOM 

MOMENTS: 
 

The location of each possible point X  is 

given by fractions: 

,
a b

x y
a c b d

= =
+ +

 

 

There infinitely many fractions. So 

“infinity” many points work for 100 , and 

“infinity” many points work for 60 , so the 

answer is “infinity minus infinity”? Yeesh! 
 

I am truly stuck. 

 

*** 

THE NEXT NUMBER OF 

 FIVE/TEN MINUTE CLASSROOM 

MOMENTS: 
 

Have we used everything we know?  
 

We’ve got: 

,
a b

x y
a c b d

= =
+ +

 

 

We have: 100a b c d+ + + =  (or 60  if we 

are looking at the other case). 
 

Have we used a c b d+ = + ? 
 

 

 

 

Oooh!  

( ) ( )

( ) ( )

100

100

100

a b c d

a c b d

a c a c

+ + + =

+ + + =

+ + + =

 

 

We see 50a c b d+ = + = ! (and this is 30  

in the 60 -ray case). Whoa! This gives:  
 

   If X  is 100 -ray partitional, then: 
 

      ,
50 50

a c
x y= = . 

 

   If X  is 60 -ray partitional, then: 
 

      ,
30 30

a c
x y= = . 

 

Only certain fractions work! We’re on to 

something! 
 

How many points work for the 100 -ray 
case? 
 

     “A point X  in the interior of R  is    

      called …” 
 

The point X  must be inside the square. So 

the fraction 
50

a
x =  must be strictly 

between 0  and 1. This means a  can have 

any of the values 1,2,..., 49 . Similarly, for 

50

b
y = , the number b  can be any of the 

numbers 1,2,.., 49 . 
 

There are 
249 2401=  possible locations 

for the point X  in the 100 -ray case. 
 

Aside: To be logically solid we should 

establish that each of these 2401 possible 

locations is actually a valid option! For 

example, if we were told that X  lay at the 

position 
22 5

,
50 50

x y= = , can we actually 

draw 100  triangles of equal area? The 
answer is yes, because from these fractions 

we see 22, 28, 5, 45a b c d= = = =  and 

we can verify the arithmetic to show all 

triangles are equal in area. (And one should 
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generalise this argument as an abstract piece 

of algebra.)  

 

How many points work for the 60 -ray 
case? 

Here 
30

a
x =  and 

30

c
y = . There are 

229 841=  possible locations for X  in the 

60 -ray case. 
 

So are we essentially done? 
 

     How many points are 100 -ray  

     partitional but not 60 -ray partitional? 

 

Oh dear. This is another twist! We want to 

know which of the 2401  points that work in 

the 100 -ray case don’t also work for the 

60 -point case. How do we wrap our minds 

around that? 
 

*** 

THE NEXT NUMBER OF  

FIVE/TEN MINUTE CLASSROOM 

MOMENTS: 
 

Which points in the square satisfying  

,
50 50

a c
x y= =    (1 , 49a c≤ ≤ ) 

are not also satisfying 

 ,
30 30

a c
x y= =    (1 , 29a c≤ ≤ )? 

 

I am worried about using the same symbols 

a  and c  in two different contexts. Let’s 
rewrite this: 
 

“How many times do we have 

,
50 50

a c
x y= =  with 1 , 49a c≤ ≤ , but not 

,
30 30

e f
x y= =  for 1 , 29e f≤ ≤ ?” 

 

I am also worried about the bad wording of 

this question! I just can’t wrap my mind 

around it! 
 

 

 
 

 

 
 

When stuck (and you are 

beyond rereading the 

question) take a step back: 

What is the general issue at 

hand? 

 

We have to count how many times one thing 

is happening while a second thing is not 

happening. What’s the best way to do that? 
 

Answer: Count the number of times the first 

thing is happening and subtract from that the 

number of times both happen! 
 

  Thing one: There are 2401 100 -ray points. 

  Thing two: There are 841 60 -ray points. 

 

How many are both?  
 

*** 

THE NEXT NUMBER OF  

FIVE/TEN MINUTE CLASSROOM 

MOMENTS: 
 

We want the number of points X  with an 

x -value that can be written both as 
50

a
 for 

some 1 49a≤ ≤ , and as 
30

e
 for some 

1 29e≤ ≤ . (And ditto for the y -

coordinates.)  
 

That is, we need 
50 30

a e
=  or: 

 
5

3
a e= . 

Of the values 1,2,3,..., 29  for e only 

3,6,9,..., 27  are multiples of three. And for 

each of these 
5

3
e  is still less than or equal 

to 49 .  So 
50 30

a e
=  happens nine times. 

(With 3,6,9,..., 27e = .) 
 

For the y -values we want 
50 30

c f
= , and 

this happens nine times as well. 
 

Thus there are 9 9 81× =  points X  for 

which x  and y  each correspond to the 
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coordinates of a 100 -ray point and a 60 -

ray point.  
 

We can finally, after all these months, 

answer the question! 
 

There are 2401 81 2320− =  points inside 

a square that are 100 -ray partitional, but 

not 60 -ray partitional! 

 
 

COMMON CORE STATE STANDARDS  

and PRACTICES: 

Oh boy! We have so hit the mark on a good 

number of practice standards! 
 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

7.    Look for and make use of structure. 

 

 
ON THE AREA OF A TRIANGLE: 

The formula 
1

2
A base height= × for the 

area of a triangle is discussed in the middle-

school curriculum and is often dubbed as 

“known” and “obvious” by high-school 

students. (After all, they have been using it 

for years!)  
 

The formula is easily seen as true if the 

altitude of triangle (line of height) lies in the 

interior of the triangle: 
 

 
 

 

 

The trouble is that it is not at all obvious the 

formula holds for all types of triangles.  

 
Consider an obtuse triangle as shown.  

If I insist on considering the side labeled 

“b ” as the base of the triangle, does the 

formula 
1

2
area bh=  hold ?  

 

A common student response to this is: 

“Just don’t use the side labeled b  as the 
base! Use the longest side of the triangle 

instead and you’ll be okay. (You’ll use the 

short height inside the triangle.)”  
 

Fair enough!  

But of course “
1

2
area bh= ” is valid in all 

contexts. (See this video if you are interested 

in the proof.)  But it is hard to believe! 
 

On an intuitive level, do you personally feel 

that each and every triangle in the picture 

below has the same area? Truly? Even one 

that goes out forty-thousand miles to the 

right and the triangle is nothing more than 

the merest of slivers? (Each triangle as the 

same base and same height, and so the 

formula says the area is constant.)  
 

 
 

A QUESTION: Abigail and Beatrice are 

standing 20 feet apart. Draw a diagram to 

show all the possible places Charlene could 

stand so that the three girls form a triangle 

of area 50 square feet. (Make sure you don’t 

have just half the answers!)   
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