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ESSAY NUMBER:  1
 

The MAA American Mathematics 

Competitions states on its website 

(amc.maa.org): 
 

Teachers and schools can benefit from the 

chance to challenge students with 

interesting mathematical questions that are 

aligned with curriculum standards at all 

levels of difficulty. 
 

The goal of this new math essay series is to 

make clear the validity of that claim! Each 

month we will examine a single problem 

from the vast and fabulous content resources 

developed over the decades by the AMC and 

show just how that problem can inspire a 

rich and meaningful classroom experience 

for all students of all levels of interest and 

capabilities. 
 

We will demonstrate the power of mulling 

on interesting mathematics and develop the 

art of asking questions. We will help foster 

good problem solving skills, and joyfully 

reinforce ideas and methods from the 

mathematics curriculum. We will be explicit 

about links with goals of the Common Core 

State Standards for Mathematics. Above all, 

we will show that deep and rich thinking of 

mathematics can be just plain fun!  
 

So on that note … Let’s get started!   

 
 

 

CONTENTS:  Here we shall: 

a. Present a problem 

b. Discuss problem solving methods in 

the context of solving that problem. 

c. Explicitly connect the problem to 

the curriculum, the Core Content 

Standards and the Mathematical 

Practices. 

d. Take the problem further. 

e. Explore deeper curricular 

mathematics inspired by the 

problem. 
*** 

This month’s challenge is Question 3 from 

the AMC 10/12 Practice Quiz on “Geometry 

of Triangles, II” 
 

A circle of radius 1 is tangent to a circle of 

radius 2. The sides of ABC∆ are tangent to 

the circles as shown, and the sides AB  and 

AC  are congruent. What is the area of 

ABC∆ ? 
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TEACHING PROBLEM SOLVING – 

and solving the problem! 
 

Here is step one to the art of solving a 

problem: 
 

1. TAKE A DEEP BREATH AND RELAX! 
 

Students (and adults too!) are often under 

the impression that one should simply be 

able to leap into a mathematics challenge 

and make instantaneous progress of some 

kind. This not how mathematics works! It is 

okay to fumble, and flail, and try ideas that 

turn out not help in the end. This is a natural 

part of problem solving that should not at all 

be dismissed! (This, after all, is the 

beginning of the process of how we solve 

problems in life.)  
 

Once we are comfortable knowing we are 

sure to fumble and flail, go to step two to 

see if we can at least engage in “organized 

flailing.” 
 

2. Ask “What is this problem about?” What 

do I know that might be relevant to its 

theme? 
 

For starters this seems to be a geometry 

problem. (Stating the obvious is very good 

way to get going!) It seems to be about: 
 

Circles    

Triangles    

Areas of Triangles  

Tangent lines to circles 
 

There might be more involved, but these are 

the big concepts that leap out. 
 

We can go a step further still and organize 

ideas in more detail. 
 

3. What facts on these topics do I know? 
 

The advantage of looking at a problem like 

this in the classroom is that you can 

introduce it a time appropriate to the content 

just covered. If we share this problem with 

our students in a second-semester geometry 

course, students will naturally begin to list 

results that might be relevant: 

 

 

Facts about tangent lines to circles: 

    *Two tangents to a circle from a common     

      point are congruent. (G-C-2) 

    * A radius and a tangent are perpendicular  

       at the point of contact. (G-C-2) 
 

 Facts about triangles: 

     * Similarity and congruence results.(G-   

      CO-8, G-SRT-3) 

     * Right triangles and Pythagoras’s    

        Theorem (8-G-B, G-SRT-4) 

     *Area formula (6-G-1)  
 

Facts about circles in triangles: 

      *The construction of incircles. (G-C-3). 

 

Here are some short videos explaining the 

mathematics of these results. (The properties 

of “incircles,” for example, has not been a 

standard curriculum topic in past decades.) 
 

Tangent Lines to Circles 

Incircles and Circumcircles 

Pythagoras’s Theorem 
 

Students might enjoy these videos too. 

 

With lists in hand we are now feeling well-

armed to work on the problem!  
 

The next step in problem solving is often a 

surprise to students! 
 

4. No-one says you have to work with the 

diagram presented to you! Feel free to 

redraw, eliminate features, or draw in extra 

features. (As long as they don’t change the 

question!)   
 

but this step comes with an extra caveat … 
 

4. (Continued) … But don’t draw in too 

much extra content! Try drawing in at most 

one or two extra lines, if any at all. That is, 

don’t make the picture more complicated: 

make it simpler.  

 

Given that my mind is thinking about 

“perpendicular radii and tangents”, maybe it 

would be good to redraw the two radii 

presented in the problem. 
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Does it feel compelling now to draw the 

altitude of the big isosceles triangle? (Recall 

we were told AB AC≅ .) 

 
I have labeled point X ,Y , Z ,U  and V  

along the way. 
 

We are trying to find the area of ABC∆ , but 

finding the area of the shaded half, AZC∆  

will suffice. (Just double the result.) And for 

that we need to know the height of this 

triangle and its base-length. Right now we 

know neither! 
 

By the way … This illustrates a good 

problem solving strategy: Can you identify 

the “penultimate step”? Ask: What do I 

need to know that would then give the result 

I seek? We need to know the lengths ZC  

and AZ . 
 

Let’s go back to steps 2 and 3, for this more 

refined sub-problem: What is “Finding the 

lengths ZC  and AZ  about?” and “What 

facts do I know about this type of task?” 
 

Well, ZC  and AZ  are side-lengths in right 

triangles and I know two general methods 

for finding such triangle side-lengths: 
 

 Pythagoras’s theorem. 

 Matching sides in similar triangles. 

We have lots of right triangles, well, three: 

AUX∆  and AVY∆  and AZC∆ , and they 

are all similar to each other by the AA  
principle. (Whoa! They each possess a right 

angle and share the angle labeled “dot.”)  I 

am not sure where this going, but I know 

AUX∆  and AVY∆ are similar with scale 

factor two ( 2YV =  and 1XU = ) and so 

2AY AX= ⋅ . This feels like it is getting at 

working out the height of the triangle. 

(Perhaps no need for Pythagoras?) 
 

Much of problem solving relies on waiting 

for an epiphany. By systematically laying 

out what you are heading for and what you 

already know, you significantly increase 

your chances for that epiphany.  
 

Epiphanies, unfortunately, do not come on 

command and will take their own good time. 

And that’s okay! Maybe it is time to put the 

problem aside and go for a walk? 
 

However, if you are leading this problem as 

a class discussion, I wouldn’t be surprised if 

someone in the room noticed that we already 

know a great deal about the length AZ : 

sections of it are radii!  

 
The only portion of AZ  we do not know is 

labeled a . But from similar triangles we 

have / 2AY AX = , that is, 4
2

1

a

a

+
=

+
, giving 

2a =  and 8AZ = ! 
 

Can we repeat the trick for ZC ? 

~AUX AZC∆ ∆ , but they are similar with 

a twist: side 1UX =  matches with ZC , but 

it is AU  that matches with 8AZ = . But 

Pythagoras tells me 9 1 8AU = − = . 

We’re good! 
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From 
ZC AZ

UX AU
=  we get 

8

1 8

ZC
=  and 

so 8ZC = .  The area of ABC∆ is thus 

1
2 8 8 16 2

2
ZC AZ× ⋅ ⋅ = = . Phew! 

 

COMMON CORE STANDARDS and 

PRACTICES: This AMC problem is 

closely connected to the CCSS-M content 

standards previously outlined. But, more 

important, being very explicit and clear with 

students about the process of problem 

solving by following a discussion like the 

one I’ve modeled here hits right on the mark 

of the following practice standards: 

 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

5.    Use appropriate tools strategically. 

7.    Look for and make use of structure. 

 

But we can, and should, go further … 

 

 
 

DECONSTRUCTING THE PROBLEM: 

A great sense of accomplishment comes 

from solving a challenge. Good for us! But 

true progress and innovation in science and 

business comes from pushing boundaries, 

asking new questions, and forging 

interesting paths of one’s own devising. 

Let’s help our next generation of citizens do 

that too! 

 

Here’s the problem again: 

 

A circle of radius 1 is tangent to a circle of 

radius 2. The sides of ABC∆ are tangent to 

the circles as shown, and the sides AB  and 

AC  are congruent. What is the area of 

ABC∆ ? 

 

How can we use this problem to inspire 

original enquiry and discovery?  

 

Idea 1: Challenge the problem writer.  
 

Why did the writer feel it necessary to insert 

condition that AB  and AC  are congruent?  

Must ABC∆  be isosceles? 

 
Where did we use the fact that ABC∆  was 

isosceles in our solution? 
 

Computer Project: Using a geometry 

software package, analyze the areas of 

triangles that circumscribe two tangent 

circles as shown above. (Don’t worry about 

choosing radii 1 and 2.) Keep the point A  
and the two circles fixed but vary the 

tangent line segment BC . Could the area of 

the triangle be arbitrarily large? Which type 

of triangle gives the smallest area? Can you 

prove true any observations you make? 

 

Idea 2: Generalise the problem. 
 

What is the area of the isosceles triangle 

ABC∆  if the small circle has radius 1r  and 

the larger one 2r ?  Is there are lovely way to 

express the formula for that area? (What has 

“16 2 ” to do with the original numbers 1 

and 2 ?) 
 

Idea 3: How special is the problem? 
 

We know that for any given triangle we can 

draw a circle tangent to all three sides. This 

is the incircle of the triangle. (See the video 

Incircles and Circumcircles.) The circle of 

radius 2 in the original problem is the 

incircle of ABC∆ . BUT … Is it always 

possible to draw a second circle, like the 
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circle of radius 1 in the problem, inside a 

triangle tangent to its incircle and to two of 

the sides? Hmm! What do you think? 

 

Idea 4: Make use of your own special 

knowledge. 
 

I have an advantage in having thought about 

incircles before. I know that there is 

something special about incircles of radius 

two.  This problem made me think of it. 

 

Computer Project:  

AREA/PERIMETER SURPRISE 

 

1. Using a geometry software package draw 

a circle of radius 2 and construct a triangle 

with three sides tangent to it.  

 
Compute the area of the triangle and the 

perimeter of the triangle. What astounding 

thing do you notice? Repeat this work for 

other triangles circumscribing the circle just 

to make sure that this isn’t just coincidence! 

 

2. Why stop at triangles? Draw a polygon 

with sides tangent to a circle of radius 2. 

What do you notice about its perimeter and 

area? 

 
3. Why is what you are observing true? 

What is special about the number two here? 

 

  
James Tanton 

www.jamestanton.com 
 

Just to give things away … 

Suppose a triangle with side-lengths a , b  
and c  circumscribes a circle of radius r . 

 
Dividing the large triangle into three sub-

triangles each of height r  we see that its 
area A  is given by: 

( )

1 1 1

2 2 2

1

2

2

A a r b r c r

a b c r

r
P

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

= + +

= ⋅

 

where P a b c= + +  is the perimeter of the 

triangle. In the special case with 2r =  we 

have that A P= , the area and the perimeter 

have the same numerical value! 

 

And the same is true for any polygon that 

circumscribes a circle of radius two. 

(Exactly the same argument works.)  

 

Idea 5: Revisit the problem with our new 

knowledge. 

 

Now that we know that triangle ABC∆  has 

area 16 2 , and that this is the same as its 
perimeter(!), could we have solved problem 

by computing the perimeter of the triangle 

instead? Would focusing on perimeter lead 

to a different, perhaps, “better” solution? 

 

 
 

Mathematics is an ongoing discussion. 

Textbook questions, classroom discussions, 

and competition problems are not closed, 

finite experiences. They are invitations for 

conversation, exploration and further 

discovery. Let’s keep open that door of 

conversation for our students. 

 


