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The upper algebra curriculum has students 
sketch the graphs of rational functions. The 
sequence of steps we ask students to follow 
is really quite long.  
 

Example: Sketch a graph of 
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Answer:  
 
1)  x -intercepts. 

We have 0y   when 2 / 3x  . 

 
2) y -intercepts. 

We have 2y   when 0x  . 

 
3) Long-term behavior. 
 

Rewrite 
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for values of x  different from zero.  

 

We see that if x  is large and positive, then 

the matching y value is close to
3 0

3
1 0


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
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Thus we have a horizontal line asymptote to 

the right, the line 3y  . 

 
We see the same is true if x  is large and 

negative, and so we have the same 
horizontal asymptote to the left as well. 
 
4) Vertical Asymptotes.  
 
The denominator in the rational expression is 

zero for 1x   (and the numerator is not). 

Thus we have a vertical asymptote, the line 

1x  .  

 

Just to the left of 1x  , say at 

0.9979x  , we have  
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and just to the right of 1x  , say at 

1.002x   ,we have 

positive
" "

small positive
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 5) Sketch. 
 
We have enough information for a sense of 
the graph.  

 
 
After such an example, ask students to 
sketch a sampler of such graphs, say, of 
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1
y

x
 , and more. A 

perfect opportunity then arises inviting 
students to practice the art of being a 
mathematician: 
 

AVOID HARD WORK! 
 
Mathematicians will work very hard to figure 
out ways to avoid hard work.  
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One notices that all these graphs have the 
same basic shape, the shape of the graph of 

1 /y x . 

  
 
Why must this be so? 
 

Look at 
3 2
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. Rewrite the rational 

expression so that a multiple of the 
denominator appears in the numerator. 
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We now see the equation as a transformation 

of the equation 
1

y
x

 , with 1x   

“behaving like zero” and all the y -values 

increased by three. So if we translate the 

graph of 1 /y x  one unit horizontally 

and three units vertically, we must obtain the 

graph of    3 2 / 1y x x   . (And 

we do! Look at the graph we obtained.) 
 
Similarly, the graph of  
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is a translation of the graph of 1 /y x . 

 
Challenge:  

Examine 
3 2x
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  and  
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Once we are convinced that every graph of 

an equation of the form 
ax b

y
cx d


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
 is a 

translation (with perhaps a reflection and 

vertical stretch) of the graph of 
1

y
x

 , one 

might be able see from inspection what the 
horizontal asymptote of the graph and the 
vertical asymptote of the graph must be. 

(They are, respectively, the lines /y a c  

and /x d c  .)  Sketching the graph 

then only takes a few seconds. 
 
Caveat: Speed is not the goal of 
mathematics! The aim here is to enjoy the 
process of probing deeply into a structure, 
namely, the structure of these rational 
functions, and to see how ideas and insights 
hang together.  
 
Pushing further: If we know the shape of 
some basic rational functions, then we can 
extend this thinking to more general 
examples.  
 

The graphs of 
1
n

y
x

  come in two basic 

shapes, depending on the parity of n . 

 

    

 

Graphing 
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straightforward: it is just a translation of the 

graph of 
2

1
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The graph of  
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a transformation of the graph of 
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too. (Do you see how ?) 

OTHER TYPES OF ASYMPTOTES 

Consider the equation 

3 1x
y

x


  . 

We can rewrite this as 
2 1

y x
x

  , as 

long as we are away from 0x  . This 

reformulation shows that the graph of this 
equation approaches the graph of the 

parabola 
2y x  for extreme values of x . 

(Moreover, 
2 21
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    for positive 

values of x  , and 
2 21

y x x
x
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negative values.) 

We still have an asymptote at 0x  . We 

can see that 

3

2

1x
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 is large and positive 

just to the right of 0x   and large and 

negative just to the left.      

We also deduce that the graph of 
3 1x

y
x


  crosses the x -axis at 

1x    (and nowhere else).   

This feels like plenty of information to garner 
a sense of its graph.  

 


