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Why is it that when performing a string of 
manipulations to solve an algebraic 
equation one should sometimes – but not 
always – go back and check that the 
solutions one obtains really are valid 
solutions to the original equation? What are 
extraneous solutions and why might they 
occur? 
 
I was recently asked to write about this 
topic as it really does seem to be a point of 
confusion for many students. And rightly 
so! Some textbooks and curricula are hazy 
on this matter (if they discuss it at all). 
 
MATHEMATICAL SENTENCES  
As I wrote in the May 2016 Curriculum 
Essay “Math is a Language,” 
http://tinyurl.com/zzz33gv, statements in 
mathematics really are English sentences. 

For example, the statement “ 2 3 5  ” 
has a noun (the quantity two-plus-three), a 
verb (equals), and an object (five). The 
statement 

3 5 3 10 13
3.25

4 2 4 4 4
      

is the long sentence “Three-quarters plus 
five-halves is equivalent to three-quarters 
plus ten-quarters, which equals thirteen-
quarters, which equals 3.25.” 
  
Some mathematical sentences are true  

( 2 3 5  , for instance) and some are false 

( 5 1 , for example).  We are usually 
interested in mathematical statements that 
are true.  
 
CONTEXT AND SOLUTION SETS 
One needs clear context in order to 
determine whether or not a particular 
statement is true. For example, we cannot 
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determine if the sentence “Harold is more 
than six feet tall” is true without knowing 
which particular Harold of the world we are 
referring to.  
 
But we could bring together all the tall 
Harolds from across the globe and say 
“Here’s the group of people who each make 
the sentence true.”  
 
The equivalent of the name “Harold” in 
algebra class is the symbol “ x .” Usually x  
represents a number, but we don’t know 
which particular number we are actually 
referring to. The mathematical statement  

“ 6x  ” has no context in and of itself and 
so we don’t actually know whether or not it 
is a true statement. (Some values for x  
make this a true statement, others do not.) 
 
Here is another statement without context. 

2 1 10x    . 
Because it has no context it is neither true 
nor false. But like we did with the Harolds 
of the world, we could assemble all the 
numbers x  could be that would make this a 
true sentence. In this example, that set is 

{ 3,3} . 

 

The solution set to an equation is the set 
of all the numbers the variable(s) in the 
equation could adopt to make the 
equation a true sentence about numbers. 
Any particular value in the solution set is 
called a solution to the equation.  

 

The solution set to the statement 6x   is 
all real numbers larger than six. The 

solution set to the statement 5x   is the 

set{5} . (Make sure to fully understand the 

subtlety of this example!)  
 
 
 

FORWARD – AND BACKWARD - THINKING 
We have certain beliefs about equalities 

and inequalities. For example, if A B , 
then we like to believe it follows that 

2 2A B . This allows us to reason, for 
example, that if x  has a value that makes 
the statement 

 
2

8
2

x
   

a true sentence about numbers, then that 
same value for x  also makes 

 2 16x    
a true statement. As there are only two 

values that make 2 16x   true, namely 4  

and 4 , then the possible values of x  we 
are considering must be one of these two 

values. (And I can see that, indeed, both 4  

and 4 make 2 / 2 8x   a true statement 
about numbers.) 
 
Notice my pedantic reasoning and writing:  

If x  is a value that makes 
2

8
2

x
  a 

true statement, then x  is also a 

value that makes 2 16x   a true 
statement. Consequently, x  could 

only be either 4  or 4 . One checks 
that both of these values actually 
make the original statement a true 
one. 

 
This is very different from what one usually 
writes in algebra class: 
 

 

2

2

8
2

16

4 4.

x

x

x or





 

  

 
A significant amount of additional content is 
left unstated in these three lines.  
 
The first and second lines imply that 

2

8
2

x
  and 2 16x   are “equivalent” 

statements.  
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Two algebraic statements are equivalent 
if the solution sets for the two 
statements are identical.* 

 

Is it obvious that 
2

8
2

x
  and 2 16x  are 

equivalent statements?  
 
We reasoned earlier only that any solution 

to  
2

8
2

x
  must also be a solution to 

2 16x  . This came from the belief that if

A B  is true, then 2 2A B  must be true 
as well.  
 

But we also believe that if C D is true, 

then 
1 1

2 2
C D  also follows as true. Thus 

we can conclude that any solution to 

2 16x  must also be a solution to 
2

8
2

x
 . 

 
So the two equations do have identical 
solution sets and so are equivalent 
algebraic statements. 
 

Also, the final two statements, “ 2 16x  ” 

and “ 4 4x or  ” are also equivalent. 

 
 
 
********************************** 
*Caveat: We are assuming here that the 
types of values deemed permissible for the 
variable(s) in each equation are understood 
and are considered the same. For example, 

the equations 
2 2

x x   
   

   
and 2

2

x
x

 
    

 
 

have the same solution sets if we assume x  
must be an integer, but they have different 
solution sets if we assume x  can be any 
real number. 
*********************************** 

 
So the lines we write in algebra class are 
actually loaded with context. In our 
example, 

2

2

8
2

16

4 4.

x

x

x or





 

  

actually reads “The statement 
2

8
2

x
  has 

exactly the same solution set as the 

statement 2 16x  , which has the same 

solution set as 4 4x or  .” 

 
What we write in algebra class states BOTH 
the forward and backward thinking, though 
we logically only need the forward thinking 
to solve the algebraic problem.  
 
BEGINNING ALGEBRA CLASS 
The algebraic manipulations one conducts 
in a beginning algebra class tend to all be 
“reversible.”  
 

If A B  holds, then kA kB  must hold 

as well for any non-zero k . And if kA kB  

holds, then A B  follows (by using the 

same belief with the constant 
1

k
). 

 

If A B  holds, then A k B k    must 

hold as well. And if A k B k    holds, 

then A B  follows (by using the same 

belied with the constant k .) 
 
Thus without thinking we implicitly (and 
correctly) assume that a whole string of 
statements like these 
  

 
 

 

2 2

3 6 3 2

3 1 3 2 5

A B

A B

A B

A B



  

  

   

        

   
all have exactly the same solution sets. Our 
job then is to simply use these standard 
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manipulations of algebra to obtain a 
statement whose solution set is blatantly 

obvious, one such as “ 5x  ” or  

“ 4 4x or  .” 

 
These equations always have 

the same solution sets. 
 
This work forgets the forward-thinking care 
we first developed. And this should be kept 
in mind, because … 
 
NOT ALL MANIPULATIONS PRESERVE 
SOLUTION SETS 
 
Suppose x  is value that makes the 

statement 5x   a true statement. Then x  

also makes the statement 2 25x  true. 

This is because we believe that if A B  

holds, then 2 2A B  holds as well. But the 
converse need not be true: If x  is a value 

that makes 2 25x   a true statement, it 
need not be the case that x  also makes 

5x   are true statement. 
 

 
Any solution to an equation A B , must 

also be a solution to 2 2A B . That is all we 
know for sure. 

 
Because careful algebraic thinking actually 
only requires only forward reasoning, we 
are permitted to use the squaring operation 
in our algebraic work.  
 
 

Example: Find the solution set to the 

equation 2 24x x  . 

 
Answer:  If x  is a value that makes the 

statement 2 24x x   true, then it also 

makes 

 2 1 25x x    

true. This can be rewritten  

  
2

1 25x   . 

Thus any solution that makes the original 
statement true must make  

 1 5 5x or     

a true statement too. And such a value also 
makes  

4 6x or   

true. And if x  is a value that makes this 
statement true, then it follows, by squaring, 
that  

 16 36x or  

will be true as well. 
 

Thus the solutions to 2 24x x   must 

be among the numbers  16,36 . 

 

Now, checking, we see that 16  makes the 
original equation a true statement about 

numbers, and 36  does not.  
 
We are not surprised by the appearance of 
an “extraneous solution” since we 
performed the operation of squaring and so 
went to a possibly larger solution set.  
 
 
There are many operations that might 
increase the size of the solution set of an 

equation A B : squaring or raising to any 
even power, taking absolute value, 
multiplying each side by zero, for example. 
(What is the solution set to the equation 

0 0 ?) 
 
One is welcome to perform any of these 
operations while manipulating an algebraic 
statement. Since we are only increasing the 
size of the possible solution set, we will 
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conclude that any solution to the original 
statement will be among the elements of 
the final solution set we identify. Our job is 
to then check which of those, if any, are 
solutions to the initial equation. 
 

Example: Solve 2 0x   . 

 
SUBTLE DOMAIN ISSUES 
 
An algebraic statement might, in and of 
itself, imply that there is a restriction on the 
permissible values of the variable. For 

example, in writing 
1 3

5

x

x


 , it is implied 

that x  cannot be zero (otherwise we are 

dividing by zero). In writing 1 4x   , it is 

implied that x  will adopt a value one or 
greater (otherwise we are attempting to 
take the square root of a negative quantity). 
 
One should take note of an implied 
restrictions an algebraic equation might 
have. 
 

Example: Solve 
2 2

1 1

4 5 6x x x


  
. 

 
Answer: It is implied here that x  cannot be 
a value that gives us a denominator of zero 
in either fractional expression. Keeping that 

in mind, if x  solves 
2 2

1 1

4 5 6x x x


  
, 

then it also solves  

 
2

2

5 6
1

4

x x

x

 



, 

and hence also solves 

 2 25 6 4x x x    , 
and 

 5 10x    
and 

 2x  . 

This final equation has solution set {2} . But 

2  is not a solution to the initial equation (it 
is not even a permissible value). So the 
original equation has no solutions. 
 

Example: Solve 3 1 0x x    . 

 
Answer: Here it is implied that x  adopts a 

value greater than or equal to 3  and also a 

value less than or equal to 1. Hmm. There 
are no solutions. 
 
If we don’t notice this, we could argue as 
follows: If x  solves the original equation, 
then it also solves 

3 1x x         

and hence also  

 3 1x x     

(by squaring), and so solves 2x  . The 
solution set of the original equation is a 

subset of {2} . Checking, we see it is the 

empty subset. 
 

Example: Solve | 7 | 2 2x x   . 

 

Answer: Recall that | |a  is a non-negative 

number and so is either a  or a , 
depending on whether or not a  itself is 
non-negative or negative. 
 
So let’s look at two cases. 
 

Case | 7 | 7x x   . 

 

Here our inequality reads 7 2 2x x   . 
Any solution to this inequality is also a 

solution to 5x   .  
 
But we have a problem! In this scenario we 

have subtly assumed that 7x   is a non-
negative quantity, and so x is larger than or 
equal to seven. There are no solutions to 

5x    in this case. 
 

Case  | 7 | 7x x    . 

 

Here our inequality reads 7 2 2x x    . 
Any solution to this is also a solution to 

3x  . 
 

Here we have assumed that 7x   is a 
negative quantity, that is, that x  is less 
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than 7 . The inequality 3x   has solution 
set “all numbers less than three” in this 
scenario. 
 
So the solution set to the original inequality 
is a subset of all real numbers less than 
three. And one then reasons that this is 
indeed the solution set of the original 
equation.   
 

 
FINAL PROBLEM: SKIPPING SOLUTIONS       
 
A different issue can arise when attempting 
to multiply an equation through by a 

fractional quantity 
1

k
 if the value of k  is 

not actually known.  
 
Consider the equation  

 

   2 4 2x x x   .   

 
The impulse is to cross out the common 

2x   and just write 4x  , and be done 
with it. But this skips a solution.  
 
Here is the reasoning one should employ. 
 

If A B holds, then 
1 1

A B
k k

  holds too, 

for any non-zero value of k .  
 

So if 2x   is non-zero, then we conclude 
that if x  is a solution to   

   2 4 2x x x   , then it is also a 

solution to 4x  . 
 

What if 2x   is zero? 
 

Well, if 2 0x   , then we see that   

   2 4 2x x x    reads as 0 0 , 

which is a true statement! 
 
So the values of x  that make 

   2 4 2x x x    true either make 

4x   true or make 2 0x    true. The 

solution set must be a subset of { 2,4 }, 

and we check that, indeed, both these 
values solve the original equation. 
 

 
HOW MUCH WRITING? 
 
Writing – and reading – paragraphs of text 
in solving algebra problems really does 
become quite tedious. One does want to 
just write a list of equations, one after the 
next.  
 
But it should be understood by one and all 
that only “forward reasoning” is being 
assumed here, that any manipulation that 
involves more than adjusting by constants 
might increase the size of the solution set. 
Thus any algebraic solution should end with 
a final statement as to which elements, if 
any, of the final solution set actually are 
solutions to the original equation. 
 

2

2

2

2

1
2

2

1 4

1 16

17

17 17

x

x

x

x

x or




 

 



 

  

Both are valid solutions of the 
original equation. 

 
Matters are pedagogically tricky here as we 
first have students solve algebraic 
equations with actions that do not change 
solution sets, and so this point is moot. 
Forcing young students to “check their 
solutions” as a matter of habit at this level 
is pedantic and irritating. But matters are 
different in upper school work, and a 
discussion of the subtleties outlined here is 
absolutely necessary. (And now students 
must “check their solutions” as a matter of 
important habit and course!)   
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