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In our early grades we learn that the 

average of a collection of data 

measurements represents, in some way, a 

“typical” or “middle” value for the data. For 

example, the average of the numbers 1, 2 , 

5 , 2 is: 

1 2 5 2
2.5

4

+ + +
= . 

Geometrically, the average is the level of a 

sand-box after we smooth out columns of 

sand of heights given by the data: 

 

 
  

 

 

In a statistics class the average value of a 

collection of data values is called the mean 

of the data. (The word still means 

“average.”) One denotes the mean of the 

data by putting a bar over whichever letter 

is being uses to denote the data. For 

example, the mean of 1 2,a a , and 3a  is: 

 

 
1 2 3

3

a a a
a

+ +
=  

 

and the mean of 1 2, , , nx x xK  is: 

 

1 2 nx x x
x

n

+ + +
=

L
.   

 

If the data set is extraordinarily large and 

one doesn’t have any hope of determining 

the mean of the full data set, then that true, 

but unknown, mean is usually denoted with 

the Greek letter µ . For example, we have 

no hope of knowing the average height of 
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all humans on this planet at this very 

moment. But we can measure the height of 

1200  humans and collect 1200  data values 

1 2 1200, , ,h h hK . We then hope that the 

sample mean h  approximates the true 

mean µ  to some reasonable degree.  

 

Exercise: Data values 1x , 2x , L , nx  have 

mean x . Prove that the sum of the 

difference of each data value from the 

mean is sure to be zero: 

 

( ) ( ) ( )1 2 0nx x x x x x− + − + + − =L . 

 

 

Exercise: Some texts might give the 

following formula for mean:  

 

1 1 2 2

1 2

n n

n

f x f x f x
x

f f f

+ + +
=

+ + +

L

L
 

Can you interpret what the symbols in this 

formula mean and why the formula is 

correct? 

 

SIMPSON’S PARADOX 

Two students Albert and Bilbert each took a 

sample of math questions over a series of 

two days. There were 100questions in total 

and Albert scored 65%  and Bilbert 64%  

overall. Thus Albert proved himself a better 

test taker. 

 

But here are the scores day-by-day: 

       

      FIRST DAY: 

      Albert = 71% 

      Bilbert = 80% 

 

      SECOND DAY: 

       Albert = 50% 

       Bilbert = 57% 

 

So each day Bilbert did a better job than 

Albert, but did not prove to be the better 

test-taker after the two days combined!  

How is this possible? 

The following table shows raw data of their 

test results.  

 
 

This paradox arises because Albert and 

Bilbert did not complete the same number 

of questions each day and the averages 

computed are not equally weighted. This 

curious phenomenon is known as Simpson’s 

paradox and was discovered by the 

Statistician Simpson in the 1960s after 

examining graduate school admission rates 

for men and women into UC Berkeley.  

 

 
ASIDE:  
There are several other measures of a 

“typical” or “central” value of a data set.  

 

The mode of a set of data values is the 

value in the set that occurs most often (if 

there is one).  

 

• For the ten data values 3, 6, 5, 3, 1, 

6, 5, 3, 8, 3 the mode is 3. 

• The data set 5, 5, 6, 6, 9, 9, 3, 3, 2, 2 

has no mode. 

• The data set 1, 1, 1, 1, 5, 5, 7, 7, 7, 

7, 8, 8, 9, 9, 9 is bimodal. 

(Is the second example quinti-modal?)  

 

For non-numerical data, such as colours, or 

letters of the alphabet, the mode is the only 

measure of central tendency available. 

 

If we arrange the data set in increasing 

order of values, then the median of the 

data is the middle value of the ordered 

sequence or the average of the two middle 

values if there are an even number of 

terms. 
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• The median of the data set 3, 3, 5, 

6, 7, 16, 16, 19, 37 is 7.  

• The median of 3, 4, 4, 5, 8, 8, 10, 12 

is 5.6
2

85
=

+
. 

The median is a value that divides the data 

set into two equally sized groups.  

 

The midrange of a data set is the average of 

the smallest and largest values.  

 

• The midrange of the data set 5, 6, 9, 

9 is 
5 9

7
2

+
= . 

The midrange provides a quick estimate to 

a central value. It is easy to compute, but is 

highly affected by extremely low or high 

values in the data set.  

 

 

Exercise: a) Find FIVE data values with: 

 

Median = 10 

Mode = 10 

Mean = 1000 

 

b) Now find five data values with median = 

10, mode = 1000 and mean = 10. 

 

c) Can you find five data values with median 

= 1000, mode = 10, mean = 10? 

 

COOL Exercise: Repeat the previous 

exercise but this time for SIX data values.  

 

 

DEVIATION FROM THE MEAN 
 

The data set 1, 2,5, 2  has mean 2.5 . So too 

does the data set: 101, 0, 1, 110− . These 

are two very different data sets, with the 

second being much more “spread out” than 

the first. We can measure the degree of 

spread by calculating the average deviation 

from the mean for each. 

 

DATA SET 1, 2,5, 2 : 

Deviations:  

| 1 2.5 | 1.5

| 2 2.5 | 0.5

| 5 2.5 | 2.5

| 2 2.5 | 0.5

− =

− =

− =

− =

 

Average deviation: 

 
1.5 0.5 2.5 0.5

1.25
4

+ + +
= . 

 

DATA SET 101, 0, 1, 110− : 

Deviations:  

| 101 2.5 | 103.0

| 0 2.5 | 2.5

|1 2.5 | 1.5

|110 2.5 | 107.5

− − =

− =

− =

− =

 

Average deviation: 

103.0 2.5 1.5 107.5
28.625

4

+ + +
=

 

The numbers 1.25  and 28.625 , the 

average deviations from the mean, do give 

a quantitative measure of the amount of 

“spread” of each data set. 

 

 

THE POINT OF THIS ESSAY 
 

Using the absolute value, the distance of a 

particular data value from the mean value 

of the data, is the natural and appropriate 

way to measure data variation. But 

statisticians DON’T use absolute values in 

their work! This is very strange and 

confusing for students. (There is also a 

second piece of confusion, which we shall 

leave to later in this essay.)  

  

Here are two rationales for the switch away 

from absolute values: 

 

 

 

 

 

 



 

www.jamestanton.com and www.gdaymath.com  

 

RATIONALE ONE: 

Working with absolute values is hard. 

Can we avoid them? 

 

Indeed, working with absolute values in 

mathematical equations is really tough!  

 

Optional Exercises:  

 

a) Sketch the “curve” 

| 1 | | 2 | 3x y− + − = . 

 

b) Find all values of w  which satisfy:  

        | 2 | 3 5 7w w w− − − − = . 

 

c) (From last month’s essay) 

Three data points (2 , 3)A = , (5,8)B =  

and (7,5)C =  are plotted on a graph.  

 

 
A horizontal line y k=  will be drawn but a 

value k  needs to be chosen so that the sum 

of the three vertical deviations from the 

horizontal line is at a minimum.  

(NOTE: We’ve drawn the horizontal line so 

that A  lies below it and B  and C  above it. 

This need not be the case.)  

 

On a calculator, type in a function that 

represents the sum of these three 

deviations and graph it.  

 

Which value of k  seems to give a minimum 

value for this sum of three deviations? 

 

But we still need a measure, a positive 

number that represents the deviation of 

each data value from the mean. If we want 

to avoid absolute value, how else can we 

obtain positive values? Answer: Square the 

values! 

 

Let’s square all the deviations and take the 

average of those squared deviations: 

 

DATA SET 1, 2,5, 2 : 

Deviations squared:  

( )

( )

( )

( )

2

2

2

2

1 2.5 2.25

2 2.5 0.25

5 2.5 6.25

2 2.5 0.25

− =

− =

− =

− =

 

Average squared deviation: 

 
2.25 0.25 6.25 0.25

2.25
4

+ + +
= . 

 

DATA SET 101, 0, 1, 110− : 

Deviations squared:  

( )

( )

( )

( )

2

2

2

2

101 2.5 10609

0 2.5 6.25

1 2.5 2.25

110 2.5 11556.25

− − =

− =

− =

− =

 

Average squared deviation: 

10609 6.25 2.25 11556.25

4

5543.4375

+ + +

=
 

 

These average squared deviations still give 

a good sense of the different spreads the 

two data sets possess.  
 

One subtle point: Data often comes from 

physical measurements – the height of a 

person, the speed of a car on a highway, 

and so on – and so has units associated with 

them.  
 

If 1x , 2x , K  , nx  are in units of inches, say, 

then the mean 
1 2 nx x x

x
n

+ + +
=

L
 also 

has units of inches, but the average squared 

deviation: 
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( ) ( ) ( )2 2 2

1 2 nx x x x x x

n

− + − + + −K

 

has units of inches squared. To bring all 

quantities and comparisons between 

quantities back to the same units, 

statisticians will take the square root of the 

average squared deviation:   

 

( ) ( ) ( )2 2 2

1 2 nx x x x x x

n

− + − + + −K

 

 

This quantity now has units of inches and is 

called the standard deviation of the data. 

 

WARNING: Statisticians might raise an 

eyebrow or two over at what I just said. 

They might prefer to call the quantity: 

 

( ) ( ) ( )2 2 2

1 2

1

nx x x x x x

n

− + − + + −

−

K

 

 

the standard deviation of the data set. 

(Note “ 1n − ” in the denominator, rather 

than “n .”) This change - the second 

confusion for students studying statistics - is 

discussed at the end of this essay.  

 

RATIONALE TWO: 

Abstract mathematics tells us it is natural 

to work with quantities squared. 

 

Suppose we run an experiment or poll some 

people and gain from the exercise n  data 

values:  

1 2, , , nx x xK . 

We, not being omniscient, know nothing 

about the data values we shall obtain: we 

don’t know what to expect for the mean of 

the values (what is the true average height 

of all humans on this planet?), what 

variation from the mean to expect, what 

the frequencies of particular values should 

be, and so on. 

 

 

But if the experiment was ideal or the 

population we were polling from is truly 

uniform, then the experiment or polling 

would be absolutely and utterly repeatable 

and we’d expect no variation in data values 

at all. That is, in the perfect ideal, all 

measurements would adopt exactly the 

same value q , say, over and over again. 

 

Let’s ask: How close is our data 

( )1 2, , , nx x xK  from some ideal set of 

repeatable data ( ), , ,q q qK ? 

 

Now we learned last month that, in two-

dimensional geometry, the distance 

between two points ( )1 2,A a a=  and 

( )1 2,B b b=  is given by:  

   ( ) ( ) ( )2 2

1 1 2 2,d A B a b a b= − + − .  

And the distance between two points 

( )1 2 3, ,A a a a=  and ( )1 2 3, ,B b b b=  in 

three-dimensional space is:  

( ) ( ) ( ) ( )2 2 2

1 1 2 2 3 3,d A B a b a b a b= − + − + −

And so on, for any dimension of space. 

 

So to answer this question we seek a value 

q  so that the point ( ), , ,M q q q= K  is as 

close as possible to our point 

( )1 2, , , nP x x x= K  in n -dimensional 

geometry. 

 

We want to choose a value q  that 

minimizes the distance: 

 

( ) ( ) ( ) ( )2 2 2

1 2
,

n
d P M x q x q x q= − + − + −L  

 

It is easier to just to minimize the quantity 

under the square root sign. Notice that we 

are now led to study a sum of quantities 

squared.  

 

Expand the sum under the root and collect 

terms:    
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( ) ( ) ( )
( ) ( )

2 2 2

1 2

2 2 2

1 12

n

n n

x q x q x q

nq x x q x x

− + − + −

= − + + + + +

L

L L

 

We see that the sum we wish to minimize is 

just a quadratic in q . It has minimum value 

for: 

( )1 1
2

2

n n
x x x x

q x
n n

+ + + +
= = =

L L
 

 

- the data’s mean! 

 

We have:  

 

The mean of a data set is the value of 

closest ideal, repeatable, experiment to the 

given data. 

 

From this perspective we see that it is 

natural to think about sums of deviations 

squared. Dividing through by n , we call: 

( ) ( )2 2

1 nx x x x

n

− + + −L

 

the variance of the data. And to match 

units, we take the square root and call this 

the standard deviation of the data: 

 

( ) ( )2 2

1 nx x x x

n

− + + −L

. 

 

Comment: We have now seen that the 

mean x  of a set of data values 

1 2, , , nx x xK  has two properties:  

 

i) The sum    

      ( ) ( ) ( )1 2 nx x x x x x− + − + + −L  

is zero. 

 

ii) Of all the sums of the form: 

     ( ) ( ) ( )2 2 2

1 2 nx q x q x q− + − + −L . 

the sum  

     ( ) ( ) ( )2 2 2

1 2 nx x x x x x− + − + −L  

has the smallest value. 

 

 

ON nVERSUS 1n −  
 

Some text authors will argue that it is better 

to divide by 1n −  in the formulas for 

variance and standard deviation rather than 

by n  for the following philosophical reason: 

 

We have that 

( ) ( ) ( )1 2 nx x x x x x− + − + + −L  

is sure to equal zero. This means that if one 

knows the first 1n −  values 

1 2 1, , , nx x x x x x−− − −K , then the value 

of the n th one, nx x− , is forced.  

 

So among the values    

     ( ) ( ) ( )1 2, , , nx x x x x x− − −K   

there are only 1n − real pieces of 

information. To reflect this, let’s divide by 

1n −  rather than n  and set the variance 

as:  

( ) ( )2 2

1

1

nx x x x

n

− + + −

−

L

  

and the standard deviation as:  

( ) ( )2 2

1

1

nx x x x

n

− + + −

−

L

. 

 

But this seems unsatisfactory an 

explanation.  

 

Text authors will often add:  

 

If the data sets are large, that is, if n  is a 

large number, then there will be little 

difference in dividing through by 1n −  over 

dividing through by n .  

 

The correct student response to this add on 

is: “So, really, why bother making this 

change?”  

 

To understand why statisticians prefer to 

divide by 1n − ,not n , let’s go back to a 

previous example.  
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Because the data set is so large, we have no 

hope of knowing the true average height µ
of all humans on this planet right at this 

moment. All we can do is measure the 

heights of a sample of humans, compute the 

data mean h  of that sample, and hope that 

h  offers a good approximation forµ . 

 

We would expect there to be some 

uniformity among all the possible samples 

we could work with. Certiainly, if we select 

a sample of 1200  humans and measure 

their heights we would obtain a sample 

mean h . If we chose a different collection 

of 1200  people we would probably obtain 

a slightly different mean h . In fact, if we 

looked at every possible collection of 1200 , 

we’d have a whole spread of values for h , 

all approximating the true mean value µ . 

Since the set of all samples of 1200humans 

well and truly covers the entire human 

population, it would be a shock if, on 

average, the set of all possible values of h  

turned out to be different from µ . 

 

The same should be true for variance. We 

can’t possibly know the true variance of the 

entire set of human population heights, but 

we can take a sample of 1200heights and 

find the value of the variance for that 

sample. And it would be a shock if again, on 

average, the variances over all possible 

samples of 1200  people turned out to be a 

value different from the true variance of 

the entire population.  

 

Let’s see what can happen with some actual 

numbers.  

 

 

 

 

 

 

 

 

 

EXAMPLE: Consider the data set 1, 2, 2,3 . 

 

This is a set of 4n =  data values with 

“true” mean 2µ =  and true variance, 

when dividing by 4n = : 

( ) ( ) ( ) ( )2 2 2 2
1 0 2 2 2 2 3 2

4

1

2

nV
− + − + − + −

=

=

and true variance, when dividing by 

1 3n − = : 

( ) ( ) ( ) ( )2 2 2 2

1

1 0 2 2 2 2 3 2

3

2

3

nV −

− + − + − + −
=

=

  

But suppose we don’t know these values – a 

data set of four values is too large for us to 

manage – so we decide to look at samples 

of size three instead and work out their 

sample means and sample variances.  

 

Here is a table of all possible subsets of size 

three (handling the repeated 2 s) and the 

sample means and variances we would see: 

 

 x  nV  1nV −  

{1,2, 2}  5 / 3  4 / 9 1 / 9 1 / 9

3

+ +

2 / 9=  

4 / 9 1 / 9 1 / 9

2

+ +

1/ 3=  

{1,2,3}  2  4 / 9  1 

{1,2,3}  2  4 / 9  1 

{2, 2,3}

 

7 / 3
 

2 / 9  1 / 3  

Average 2 1/3 2/3 

 

We see that the means and the variances 

do depend on which sample of three you 

happen to choose.  

 

We also see, in this example, that our first 

dream is true: the average of all the sample 

means matches 2µ =  on the nose.  
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And our second dream is true too if we 

divide by 1n −  instead of n  when 

computing variances: the average of the 

values of 1nV −  over all samples matches the 

value of 1nV −  for the overall data. 

 

These two claims are not a coincidence for 

our particular example: they are true in 

general. It is for this reason that statisticians 

prefer to work with the formula: 

 

( ) ( )2 2

1

1

nx x x x

n

− + + −

−

L

 

 

for variance and the square root of this for 

standard deviation. 

 

Exercise: There are six two-element subsets 

of the data set 1, 2, 2,3  (if you handle the 

repeated 2 s appropriately). List all six 

subsets, compute the mean and variance 

1nV −  of each, and take the average value of 

these six means and variances. Show these 

average values match 2µ =  and 

1 2 / 3nV − =  of the original data set. 

 

MATHEMATICAL PROOFS: 

 

The mathematics here is tedious algebra 

and is hard to read. One can phrase the 

algebra in terms of expected values and 

variances of random variables ( ( )E X  and 

( )Var X ) and make matters less 

complicated visually, but one does this at 

the price of obscuring the conceptual 

straightforwardness.  

 

If you are game, here’s how these proofs 

proceed.  

 

Suppose a population possesses a total of

N  data points and has mean:  

1 2 Ny y y

N
µ

+ + +
=

L
. 

Our job is to look at a subset of n  data 

points, 1 2, , , nx x xK , compute their data 

mean x , and take the average of all 

possible values for x  over all possible 

subsets and show this average equals µ . 

We must also compute the variances  

( ) ( )2 2

1

1

nx x x x

n

− + + −

−

L

 

over all subsets and show that their average 

equals: 

  
( ) ( )2 2

1

1

Ny y

N

µ µ− + + −

−

L
. 

 

Now there are 
( )

!

! !
N n

N
C

n N n
=

−
 subsets 

of size n  among N  data points, so in each 

case, our average is a sum divided by this 

number. 

 

For the sample means we need to show: 

 

( )

1 2 1 2' ' '

!

! !

n nx x x x x x

n n
N

n N n

+ + + + + +
+ +

−

L L
L

 

equals µ  where the numerator is the sum 

of sample means over all possible subsets. 

(There is a similar, but more complicated 

formula, for the average of the variances.) 

 

This expression is equivalent to: 

 

( ) ( ) ( )( )1 2 1 2

1 !( )!
' ' '

!
n n

n N n
x x x x x x

N

− −
+ + + + + + + +L L L

 

Now a particular data point x  appears in 

( )1 1

( 1)!

1 !( )!
N n

N
C

n N n
− −

−
=

− −
 subsets of size 

n . So in the sum we have each data point 

mentioned this many times. Our expression 

is thus equivalent to: 

 

( ) ( )
( ) ( )

( )
( ) ( )

1 !( )! 1 ! 1 !

! 1 ! ! 1 ! !

n N n N N
x y

N n N n n N n

 − − − −
+ +  − − − − 

L
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where the sum is over each and every data 

point in the set. 

 

This simplifies to: 

 

( )1
x y

N
+ +L  

 

 which is indeed µ ! 

 

 

For the average value of the variances, we 

need to work with: 

 

( )

( ) ( )

( ) ( )

2 2

1

2 2

1

1

' ' ' '!

! ! 1

n

n

x x x x

n

x x x xN

n N n n

 − + + − 
 −
 
 − + + −
 +

− − 
 +
 
 
 
 

L

L

L

 

This is equivalent to: 

 

( ) ( )

( ) ( )
( ) ( )

2 2

1

2 2

1

!
' ' ' '

1 ! !

n

n

x x x x

N
x x x x

n n N n

 − + + − 
 

+ − + + − 
− −  

+ 
 

L

L

L

( ) ( )

( ) ( )

( ) ( )

2 2

1 1 1

2 2

1 1 1

!

1 ! !

1 1

1 1
' ' ' ' ' '

n n n

n n n

N

n n N n

x x x x x x
n n

x x x x x x
n n

= ×
− −

    − + + + + − + +    
    
 

    + − + + + + − + +       
 + 
 
 

L L L

L L L

L

( ) ( )

( )( ) ( )( )
( )( ) ( )( )

2 2

1 2 1 2

2 2

1 2 1 2

!

1 ! !

1 1

1 ' ' ' ' 1 ' '

n n

n n

N

n n n N n

n x x x x n x x

n x x x x n x x

= ×
− −

 − − − − + − + − − − +
 
 − − − − + − + − − − + 
 + 
 

L L L

L L L

L

 

By expanding terms and counting how 

many times a particular data point squared 
2

1x  appears and how many times the pair 

1 2x x  appears (and these counts are the 

same for all data points), one can show that 

this expression does indeed equal: 

     
( ) ( )2 2

1

1

Ny y

N

µ µ− + + −

−

L
, 

 

the variance over all the data points. 

 

We’ll leave the details to the truly gung-ho 

reader! 

 

Exercise: To get a (manageable) feel for the 

algebra, do work through the details for the 

case of 4N =  data points: 1 2 3 4, , ,x x x x . 

Write down and simplify the formulas for 

the variances of each of the subsets 

{ }1 2 3, ,x x x ,{ }1 2 4, ,x x x ,{ }1 3 4, ,x x x ,

{ }2 3 4, ,x x x  and an expression for the 

average of these four values. Show this 

average equals: 

 

    

2

1 2 3 4

1

2

1 2 3 4

2

2

1 2 3 4

3

2

1 2 3 4

4

4

41

3

4

4

x x x x
x

x x x x
x

x x x x
x
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