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PROMOTIONAL CORNER: Have 

you an event, a workshop, a website, 

some materials you would like to share 

with the world? Let me know! If the work 

is about deep and joyous and real 

mathematical doing I would be delighted 

to mention it here. 
*** 

Interested in teaching problem solving in 

our mathematics classroom in such a 

way that doesn’t distract from the 

demands of the curriculum and directly 

attends to the Common Core State 

Standards? Have a sneak peek at 

materials being developed along these 

lines at www.jamestanton.com/?p=1193. 

The MAA and I will be developing 

professional development opportunities 

plus books, videos, and more. Big plans 

afoot! 

Looking for a geometry text, one that 

cuts through the clutter and works to 

promote joyous mathematical thinking?  

Three high-schools are currently using  
 

     GEOMETRY Vol I and Vol II 
 

available at www.lulu.com (search under 

“Tanton Geometry”).  
*** 

And while you are at lulu.com, have a 

look at: 

THINKING MATHEMATICS: Vol 1 

Arithmetic = Gateway to All 

I am particularly chuffed with this first 

volume in the series. This is written for a 

beginning audience (high-school age and 

up) and really promotes deep 

understanding, thinking, reflection, 

exploration, and wonder; finding 

incredible depth in the simplest of ideas.  
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PUZZLER: Darian is about to write 

sixty-four numbers in the cells of an 

8 8×  chessboard, one number per cell, in 

such a way that each number equals the 

arithmetic average of the numbers in its 

horizontal and vertical neighbours. 

(Corner cells have two neighbours, edge 

cells three neighbours, and interior cells 

four neighbours.) For example, if Darian 

writes 7  in the top left corner cell, he 

could then write 4  and 10 , say, in each 

of its two neighbours. The edge cell with 

the number 4  could then have 

neighbours 7  (necessarily), 8  and 3− , 

and so on. 
 

As Darian completes this task he notices 

something very surprising. What?  
 

THE RETURN OF AVERAGES: 

In the July 2012 Cool Math essay we 

discussed the appearance of averages in 

three different settings and learnt that 

different contexts can lead you to 

different formulations of what “average” 

could best mean. Those ideas have 

stayed in the back of my mind the past 

number of months. My subconscious 

was clearly telling me that there is more 

to say on the matter of “average.” 
 

Geometric Interpretations: 

When asked “what is the average of two 

numbers a  and b ?” most people think 

of their arithmetic average: 
2

a b+
.  

On a ruler this represents the location of 

the point midway between the point 

marked a  and the point marked b . 

 
Most people dub this interpretation as 

“obvious,” but actually there are some 

subtle issues afoot that should be 

attended to. “ a ” on a ruler is not a 

number, but a physical length, the actual 

distance of the point marked a  from the 

left end of the ruler. So a  has units of 

length. Similarly b  is a physical length.  
 

The midpoint is a point on the ruler 

equidistant from the two locations 

marked a  and b . If we denote its 

distance from the left end of the ruler as 

x , then the distance between the points 

marked a  and x  is the difference of the 

lengths, x a− . The distance between the 

points marked x  and b  is the difference 

of lengths b x− . We want x a b x− = − , 

giving ( ) / 2x a b= + , as claimed. 

 

This seems like hyper-pedantic work, 

but as we shall see attention to units is 

important when thinking about averages. 
 

Another “length” interpretation: 

If the two given numbers a  and b  are 

positive, we can think of them as the side 

lengths of a rectangle. 

 
What is the side-length of a square with 

the same perimeter as the rectangle?  
 

Here we need to solve 4 2 2x a b= +  

giving 
2

a b
x

+
= , the arithmetic mean. 

 

This opens us to another idea: 
 

An “area” context:  What is the side-

length of a square with the same area as 

the rectangle?  

 
Here we need to solve 2x ab=  giving 

x ab= . This formula is a meaningful 

“average” of the two numbers a  and b , 

and is called their geometric mean. 
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Why stop at this? 
 

Another length context: Suppose I am  

Pythagophilic and like to focus on 

diagonal lengths.  

 
What is the side-length of the square 

with the same diagonal as the rectangle? 
 

Here we need to solve  
2 2 2 2a b x x+ = + . 

This gives 

 
2 2

2

a b
x

+
=  

which is called the quadratic mean of a  

and b . (My thanks to @hubbard_rob for 

pointing this out to me in a twitter 

conversation.) 
 

The fun doesn’t stop!  Overlap a 

rectangle with side lengths a  and b  and 

a square of side-length x  as shown.  

 
 

i) Show if area I area III=  then we 

must have x ab= , the geometric mean 

of a  and b . 
 

ii) Show that if 

area I area II area III= +  then we must 

have 
2

a b
x

+
= , the arithmetic mean of 

a and b . 
 

 

 

 

iii) Show that if 

area I area II area III+ = , then we must 

have 
2

1 1
x

a b

=
+

. This is called the 

harmonic mean of a  and b . (This arose 

in the context of studying velocities in 

the July 2012 essay. Units of “length per 

time” were important in that context.)  
 

Research: 

It seems that area II  is in some dispute 

as to where it belongs. If we align it with 

area I  we get the harmonic mean. If we 

align it with area III  we get the 

arithmetic mean. If we align it with both 

(
1 1

2 2
area I area II area III area II+ = + ) 

we get the geometric mean. What means 

result if we split area II  between the 

two in some proportion? Say, 
1 2

3 3
area I area II area III area II+ = + , or 

more generally, 

( )1area I area II area III area IIλ λ+ ⋅ = + − , 

for some value λ .  What does x then 

equal? What new means do we discover? 
 

More research! Apply all these ideas in 

the third dimension. What cube of side-

length x  has the same volume as an 

a b c× ×  rectangular box? Same surface 

area? Same sum of edge lengths? 
 

Align a cube and a rectangular box in a 

manner analagous to the diagram on the 

left. Identify regions of space. Set some 

equal to others. Can you discover 

interesting means for the three numbers 

a , b  and c ? 
 

 

In case you hadn’t noticed, the word 

“mean” is often the preferred word for 

formula that represents some type of 

middle value for a set of numbers.  
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Comment: We have lapsed into 

assuming that our two numbers a  and b  

under consideration are positive.  (The 

geometric mean of two quantities, for 

instance, could be in trouble otherwise!) 

Just to be clear, let’s say that from now 

on, for sure, all numbers discussed shall 

be assumed positive. 
 

 
WHAT SHOULD A MEAN DO? 

Greek scholars of the time of Pythagoras 

(ca 500 B.C.E.) identified the four 

means that have appeared thus far: the 

arithmetic mean 
2

a b+
, the geometric 

mean ab , the harmonic mean
1

1 1

2

a b
+

, 

and the quadratic mean 
2 2

2

a b+
. And 

as the research challenges suggest other 

means are possible. For example, the 

contraharmonic mean of two numbers a  

and b  is given by 
2 2a b

a b

+
+

.  

Challenge: If A , G  and H  denote the 

arithmetic, geometric and harmonic 

means of two numbers, prove that 

G AH= . Also prove that H G A≤ ≤ . 

(Use areas I, II and III?) 

 

Let ( ),M a b  denote a formula for some 

mean of a and b . 
 

All the means listed give values that lie 

between a  and b . For example, to 

prove this for the quadratic mean notice 

that if a b≤ , then  
2 2 2 2

2

2 2

a b b b
b b

+ +
≤ = =  

and 
2 2 2 2

2 2

a b a a
a

+ +
≥ = . 

If a b≤ , then ( ),a M a b b≤ ≤ .      

 

As a consequence, the mean of two 

identical values is that value: 

( ),M a a a= . (This feels right!)  

 

Also, each of the means listed above is 

has the same units as the original values. 

For example, if a  and b  are lengths, 

then 2 2a b+  is the sum of two areas and 

so has units of area. Halving this to get 
2 2

2

a b+
 is still a result in units of area. 

Taking the square root, 
2 2

2

a b+
, 

brings us back to units of length. 
 

The Greeks were very aware of their 

units (and some historians argue this is 

why they never invented algebra, per se. 

An expression such as 2"x x+ ” would 

have no meaning to the Greeks: How 

can you add an area and a length?) They 

felt it necessary that any mean of two 

numbers, which represents some sort of 

“middle” of them, should be another 

value of the same type: the mean of two 

lengths should be a length, the mean of 

two weights should be a weight, and so 

on. Very reasonable! 
 

How does this respect for units translate 

into mathematics? 
 

The arithmetic mean of 3  kilograms and 

7  kilograms is 5  kilograms:  

( )3,7 5M = . 

If I measured using units of pounds 

instead, I would need to multiply each 

value by a factor of 2.2. (There are 2.2 

pounds to the kilogram.) The mean 

should also change by a factor of 2.2 

(after all, it too has units of weight). 
 

( )2.2 3,2.2 7 2.2 5M × × = × . 
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In general, we’d expect a mean to 

satisfy: 
 

( ) ( ), ,M ka kb kM a b= for any value k . 

 

Finally, notice that all our means are 

symmetrical: it does not matter in which 

order we insert terms into the formula. 
 

( ) ( ), ,M a b M b a= . 

 

So we have identified three basic 

qualities a mean between two values 

should possess: 
 

If a b≤ , then: 
 

( )
( ) ( )
( ) ( )

(1) ,

(2) , ,

(3) , ,

a M a b b

M a b M b a

M ka kb kM a b

≤ ≤

=

=

 

 

Comment: One might desire additional 

properties. For lengths along a ruler we 

might feel that a “translational property” 

should hold: If we shift all our numbers 

to the right by 2 inches, then the mean 

should also shift by 2 inches: 

       ( ) ( )2, 2 , 2M a b M a b+ + = + . 

Such additional properties will start to 

restrict our list of possible means. For 

example, the arithmetic mean satisfies 

this translational property, but the 

geometric mean does not.  

 

Challenge: Show that ( )max ,a b , the 

formula that returns whichever of the 

two numbers is biggest, satisfies the 

three basic properties of a mean. Show 

that ( )min ,a b  does too. 

 

 

 

 

 

 

 

 
FINDING LOTS OF MEANS! 

Means from Calculus. 
 

In calculus class we learn of the Mean 

Value Theorem: 
 

     For a differentiable function f  on an  

     interval [ , ]a b  there is a value c   

     between a  and b at which the  

     instantaneous rate of change of the  

     function equals its average rate of  

     change:     

           ( ) ( ) ( )
'

f b f a
f c

b a

−
=

−
.  

 

 
 

If the function is concave, the value of 

c is unique. 
 

So for each choice of concave function 

f  we can use the formula 

( ) ( ) ( )
'

f b f a
f c

b a

−
=

−
 to find a value c  

between any two numbers a  and b . 

This number c  has something to do with 

averages so it might just give as new 

means to consider! 
 

For example, with ( ) 2f x x=  (and 

( )' 2f x x= ) the mean-value formula 

reads: 

               
2 2

2
b a

c
b a

−
=

−
 

giving 
2

a b
c

+
= , the arithmetic mean!  
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Choosing ( ) 1
f x

x
=  gives: 

( )2

1 1

1 1a bb a

b a b a ab abc

−
−

− = = = −
− −

 

and so c ab= , the geometric mean.  
 

This mean-value theorem approach 

yields two familiar means at least. 
 

Question:  It is clear that the first 

property of being a mean will be 

satisfied most of the time: If a b< , then 

certainly a c b≤ ≤ . It is not clear what 

happens if a b= : the formula 

( )
( ) ( )

'
f b f a

f c
b a

−
=

−
 breaks down.  

Or does it? What happens to the quantity  

( ) ( )f b f a

b a

−

−
 as b a→ ?  What then is the 

“right” choice for c  in the case with 

a b= ? 
 

What about the second property of being 

a mean? Is it automatically satisfied? 
 

We can try all sorts of different 

(concave) choices for ( )f x . 

 

     Consider ( ) lnf x x= . Show that this  

     gives 
ln ln

b a
c

b a

−
=

−
, which is called  

     the logarithmic mean.  
 

Comment: The logarithm of a value is 

said to have no units. It represents the 

power of a quantity and so is simply a 

“count” of sorts, counting how many 

times an arithmetic operation is to be 

applied. For example, in 310  the 10  

might be in units of length, but the “3” 

is referring only to the instruction to 

multiply this quantity of length by itself 

three times.  
 

The logarithmic mean satisfies all three 

properties of being a mean. 

Actually this brings up an important 

point: We have shown that the mean-

value theorem will lead to a formula for 

c that satisfies the first two mean 

properties. We’ve skipped over the 

question of whether or not the third 

mean property, ( ) ( ), ,M ka kb kM a b= , 

automatically holds too. 
 

CHALLENGE: In fact it doesn’t! Find 

a choice for a function ( )f x  that leads 

to formula for c  for which the third 

property of being a mean fails.   
 

Carrying on … 
 

Consider ( ) 3f x x= : This gives 

2 2

3

a ab b
c

+ +
= .This formula satisfies all 

three properties. 
 

Consider ( )
1

2f x x= : This give 
2

2

a b
c

 +
=   
 

.This satisfies all three 

properties too. 
 

CHALLENGE: Show that ( ) rf x x=  

for 0,1r ≠  is sure to give a formula that 

satisfies the third property of being a 

mean. (What happens for 0r = ? For 

1r = ?)   
 

Show that as r →∞ , the formula one 

obtains from ( ) rf x x=  approaches the 

formula ( )max ,a b . (What do you get 

for r → −∞ ?) 
 

 

CHALLENGE: Does this approach 

give all means? Is there a function ( )f x  

that yields the quadratic mean? How 

about the harmonic mean?  
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CURRENT RESEARCH 

Work of this type is still a topic of active 

research! Just last month Bruce Frank 

published a paper, “Looking for a few 

good means,” (American Mathematical 

Monthly, Volume 119, No. 8, Pages 

658-669) in which he examined an 

integral approach to means. This 

thinking uses the notion of the “average 

value of a function.”  
 

Suppose ( )y f x=  is a continuous 

function defined for positive inputs and 

a b≤  are two numbers. Then 

( )
b

a
f x dx∫  is the area under the curve 

from x a=  to x b= .  
 

There is some height N  along the y -

axis so that the rectangle above x a=  to 

x b=  along the x -axis has the same 

area as the area under the curve. 

(Imagine the area being “spread out” 

evenly to make a level surface at 

y N= .)  

 

Thus ( ) ( )
b

a
b a N f x dx− = ∫ , giving 

( )1 b

a
N f x dx

b a
=

− ∫ , which is called 

the average value of the function on 

[ , ]a b . 
 

If f  is an increasing or a decreasing 

function, the intermediate value theorem 

assures us there is unique point c along 

the x -axis so that ( )f c N= .  We have:   

         ( ) ( )1 b

a
f c f x dx

b a
=

− ∫ . 

 

This gives us a new formula for the hunt 

of means. For example, using ( )f x x=  

gives 
2

a b
c

+
= , using ( )

2

1
f x

x
=  gives 

c ab= , and ( ) 1
f x

x
=  gives the 

logarithmic mean. (Check these!)  
 

Question: Compare the functions used 

here to the ones we used in the mean-

value theorem. Anything curious to 

note? 
 

Technical Challenge: It is clear that if 

a b< , then certainly a c b≤ ≤ . But 

again it is not clear what happens if 

a b= : the formula 

( ) ( )1 b

a
f c f x dx

b a
=

− ∫  breaks down. 

 

Use the first fundamental theorem of 

calculus (and/or L’Hopital’s Rule?) to 

show that  

                   
( )

( )

a h

a
f x dx

a h a

+

+ −

∫
  

approaches the value ( )f a  as 0h→ . 

What then is the “right” choice for c  in 

the case with a b= ? 
 

What about the second property of being 

a mean? Does  

( ) ( )1 1a b

b a
f x dx f x dx

a b b a
=

− −∫ ∫ ? 

 

 

Again the first and second properties of 

being a mean are sure to automatically 

hold for any formula we obtain, but the 

third property is in doubt.  
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As before, one can show that ( ) rf x x=  

for 0r ≠  is sure to give a formula that 

satisfies the third property of being a 

mean. The new result in Frank’s paper is 

that the functions  ( ) rf x x=  are the 

only functions that give formulas 

satisfying the critical third condition 

using this integral approach! 

 

CHALLENGE: Okay. What’s up? 

What is the relationship between the 

mean-value theorem for derivatives (the 

calculus theorem we first mentioned) 

and the mean value theorem for integrals 

(the second calculus theorem listed)? 

They both seem to yield the same results 

about means. Have we essentially just 

completed the same work twice, but in 

two different guises?  
 

 
 

SOLUTION TO THE OPENING 

PUZZLER:  
 

The only way for Darian to complete his 

task is to fill in each and every cell with 

the same number! 
 

Suppose Darian did start with the 

number 7. He writes 7s for a while, but 

as soon as he writes a different 

number N  in a cell neighbouring a 7 he 

is doomed!  
 

Suppose he writes a larger number. (The 

case of smaller is analogous.) The new 

number N he writes has 7 as a neighbor. 

But N  needs to be the average of all its 

neighbors. Having 7, smaller than N , as 

one of its neighbours means that N  

requires another neighbor larger than N  

to “counter act” the 7 . Call this new 

number M . We have 7 N M< < .  
 

Now focus on M . It has the smaller 

number N  as a neightbour but needs to 

be the average of all its neighbours. Thus 

M  has an even larger neighbor still. 

 

In this way we are doomed to follow an 

ever-increasing path of larger and larger 

values. As there are only 64 cells, this 

path must eventually return to a cell 

already visited, which is a problem, as 

any revisited cell won’t be a value even 

larger still! 
 

The only way out of this pickle for 

Darian is to write the number 7 for each 

and every cell.  
 

Question: Can Darian complete the task 

if he used a mean different from the 

arithmetic mean? (Oooh …How do you 

generalize the means we have discussed 

to more than two values?)  
 

 
 

BONUS PUZZLER:  
I jog uphill at a speed of 4 miles per 

hour, I jog on flats at 6 miles per hour, 

and I jog downhill at 12 miles per hour. 

If it takes me 1 hour to jog to work and 2 

hours to jog home from work, how many 

miles is it to work?   

 

The real question… What is special 

about the numbers “4”, “6” and “12” that 

make this puzzle work?  
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