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PROMOTIONAL CORNER: Have you an 
event, a workshop, a website, some 
materials you would like to share with the 
world? Let me know! If the work is about 
deep, joyous, and real mathematical 
doing I’ll happily mention it here. 

*** 
Look for WITHOUT WORDS and MORE 
WITHOUT WORDS – with classroom 
posters! – soon to be released in the U.S. 
 

 
 

 

 
 

OPENING PUZZLE: The A series of 
international paper sizes sets A4 paper as 
297mm by 210 mm (which is 
approximately 11 ¾  inches by 8 ¼  
inches). Why the numbers 297 and 210? 
 
Comment: The US does not follow 
international standards: A4 paper here is 
11 inches by 8 ½ inches. Why doesn’t the 
US follow international standards? 
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THE SQUARE ROOT OF TWO 
 
The square root of two is defined to be the 
side length of a square of area two. Do we 
know that such a square exists? 
 
We can certainly draw a square of side 
length one unit (use your favorite unit of 
length: an inch, a meter, a furlong) and 
hence draw a square of area one square 
unit. But how do you draw a square of area 
two square units? This is not a trivial 
question and takes an epiphany to see how 
to do it.  
 
The answer is to draw a tilted square on the 
diagonal of the unit square. 

 
This tilted square is composed of four right 
triangles, each of area half a square unit, 

and so has total area 2 . The square root of 
two does indeed exist and it matches the 
length of the diagonal of a unit square.  
 

CHALLENGE: Draw a picture to make it 
clear that the square root of three 
actually exists. 

 
We all “know” that the square root of two is 

an irrational number, that 2  cannot be 
written as a fraction.  
 
But how do we know? (And why do so 
many school curricula insist on testing 

students on “knowing” that 2  is an 
irrational number when absolutely no proof 
of this assertion is ever proffered?) 

 
One approach to proving the irrationality of 

2  is to assume that the number is a 
fraction and then see if something goes 
wrong mathematically in believing this the 
case. If indeed the mathematics does go 
awry, we can only conclude then that our 
beginning assumption was wrong.  
 
So let’s believe that the square root of two 
is rational for a moment and see what 
happens. Let’s assume we can write 

2
a

b
  for a pair of integers a  and b .  

 
Actually, we may as well assume that the 

particular integers we use, a  and b , are as 
small as possible. By this, I mean, we can 
assume that we’ve canceled out any 
common factors in the numerator and 
denominator and so we are writing 

2
a

b
  as a reduced fraction.  

 
So with this belief in place, we can say we 
have a right isosceles triangle with side 

lengths 1  and hypotenuse 
a

b
.  

 
Let’s scale this picture up by a factor b . 
This then gives a right isosceles triangle 

with side lengths b  and hypotenuse a , all 
integers. And, moreover, these are the 
smallest integers possible for the sides of a 
right isosceles triangle.  
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Great. Now fold the right isosceles triangle. 

 
In this labeled picture, edge PT  is folded 

over to PR . Length RS  equals length ST .  
 

Angle T  was a right angle, so the angle at 

R  is a right angle as well. Angle Q  is 45 . 

So the shaded triangle, QRS , is another 

right isosceles triangle. It can’t have integer 

side lengths as the numbers a  and b  were 
already the smallest integer sides of such a 
triangle. 
 

But look. The sides of QRS  are integers! 

We have 
 

  QR QP RP a b      

  RS QR a b       

  
( ) 2

QS b ST

b RS b a b b a

 

      
  

 
The math has gone awry. We have a right 
triangle whose sides both must be and can’t 
be all integers.  
 
All our reasoning was absolutely solid and 
correct. The only thing that can be wrong 
with our work was believing at the very 

beginning that 2  can be written as a 

fraction. It must be the case then that 2  
is not a fraction. 
 

CHALLENGE:  Reverse this process. Start 

with a right triangle QRS  with side 

lengths d , d , and c , and pretend it 
arose from this folding exercise. Show 
that the larger right triangle whence it 

came has dimensions c d , c d , 

2c d . 

 

CHALLENGE:  Motivated by the previous 

challenge, show that if a fraction 
c

d
 is an 

approximation for 2 , then 
2c d

c d




 is a 

better one.  
 
For example, starting with the (lousy) 

approximation 
1

1
 for 2 , this process 

gives the sequence of fractions:  

1 3 7 17 41 99 239
, , , , , , ,

1 2 5 12 29 70 169
 

One can check on a calculator that the 
squares of these fractions do indeed 
seem to get closer and closer to the value 

2 . 

 

 
A4 PAPER 
 
The A series of international paper sizes 
follows two criteria: the paper size must be 
pleasant to handle and pleasant to look at, 
and when the paper is folded in half, one 
should obtain a smaller rectangle of paper 
of the same proportions as the original.  
 
What size rectangular paper meets these 
criteria? 
 
The second criterion is a mathematical one, 
so let’s look at that one first.  We want a 
rectangle of some proportions so that half 
that rectangle has the same proportions.  
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Suppose we start with a rectangle a  units 

on the long side and b  units on the short 
side. Then its long-to-short proportions are 

a

b
.  

 
If we fold the rectangle in half, we get a 

rectangle with long side b  and short side 

/ 2a . It has long-to-short proportions 

/ 2

b

a
.   

 
 

The international standards want these to 
be the same proportion. That is, they want  

/ 2

a b

b a
  . 

This can be rearranged to read:  
2

2
a

b

 
 

 
  

or equivalently 

 2
a

b
 .  

So we want one side of the paper to be 

longer than the other by a factor of 2 . 
This meets the second criterion. But this is 

problematic: the numbers a  and b  should 
be a whole number of millimeters, or at 
least as easy fraction of millimeters, so that 
manufacturers have the means to measure 
and make the paper. But we’ve proved that 

2  is not a fraction and so no such 

numbers a  and b  exist!  
 

Nonetheless, the folk if international 
standards went with the values 297 mm 

and 210 mm for a  and b . Why these 
numbers? 
 
These dimensions do give a rectangular 
sheet that meets the first criterion – being 
pleasing to handle. But what about that 

that second criterion? 
297 99 3 99

210 70 3 70


 


 

is not the square root of two. 
 

 
THEON OF SMYRNA 
 
Scholars since the time of antiquity have 
been thinking about and playing with the 
number the square root of two. Theon of 
Smyrna (ca 140 CE), for example, was fully 
aware that if a rectangle of sides a  units 

and b  units, has proportions that 

approximate 2 , then drawing a square on 
the small side of that rectangle followed by 
another square on the long side of what 
results gives a new, larger rectangle with 
proportions that more closely approximate 

2 .   

 

(That is, if 
a

b
 approximates 2 , then 

2a b

a b




 is a better approximation. Sound 

familiar?) 
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For example, if we start with a 1 1  square, 
representing the (lousy) approximation 

1
1.0000....

1
  to the square root of 2 ,   

 
then Theon’s method suggests that a 3 2  
rectangle gives a better approximation:  

 
 

and a 7 5  rectangle a better 
approximation still 

 
 

Next comes the a 17 12  rectangle 

 
We get the sequence of fractions: 
 

1 3 7 17 41 99 239
, , , , , , ,

1 2 5 12 29 70 169
 

 
which is today known as Theon’s Ladder.  
 
We can prove that this sequence converges 

to 2 . 
 
 

Proof: Suppose 
a

b
 is a fraction that 

approximates the square root of two. Then 
2

2
a

b


 
  

 
, for some error  . The next 

term in Theon’s Ladder is 
2a b

a b




, and  

 

2 2 2

2 2

2 2

2 2

2

2 4 4
2 2

2

2

2

4

a b a ab b

a b a ab b

a b

a ab b

a b



   
   

   




 

 


  

since, in Theon’s Ladder, a  and b are 

always each at least 1. Thus 

2
2a b

a b

 
 

 
 

differs from 2  by less than quarter the 
previous error.    
 
The folk who set international A4 paper size 
knew about these fractions and used the 

approximation 
99

70
 to create a piece of 

paper with proportions that approximate 

the square root of 2. They tripled 99   and 

70  and used the dimensions 297  mm and 

210  mm.  This is the size that seemed 
pleasing to handle.  
 
All the remaining standard A paper sizes, 
A1, A2, A3, and so on, are close 
approximations to scaled versions of this A4 
size .They (almost) fit together to make 
their own tiling pattern.  
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By the way there are international B and C 
series paper sizes too. They are for posters 
and for envelopes. 
 

 

AN INFINITE FRACTION FOR 2   
 
Each fraction in Theon’s Ladder can be 
rewritten in a beautiful way: 
 

1 1

1 1
  

3 1
1

2 2
    

7 1
1

15
2

2

 



  

17 1
1

112
2

1
2

2

 





  

41 1
1

129
2

1
2

1
2

2

 







  

And so on.  
 

 

CHALLENGE: Show that 
2a b

a b




 equals 

1
1

1
a

b





. Use this to explain why the 

fractions in Theon’s Ladder follow the 
indicated pattern. 

 
Since the fractions in Theon’s Ladder 

converge to 2 , this suggests that the 
“ultimate term” of this pattern, the infinite 

fraction 
1

1
1

2
1

2
1

2
1

2
1

2
2














,   

 equals 2 . 
 
  

CHALLENGE:  

Show that 
1

2 1
1 2

 


.  

Now substitute this formula into itself to 

get 
1

2 1
1

1 1
1 2

 
 

  
 

. 

Substitute the original formula into this 
expression, and keep doing this. What do 
you seem to conclude?   

 

 
RESEARCH CORNER 
 
Stacking squares together in different 
patterns to create larger and larger 
rectangles gives approximations to different 
irrational numbers. For example, start with 
the unit square and add just one square at 
each stage of the game this time, one 
square to the longer side of the rectangle 
one has.   
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This construction pattern gives us 
rectangles with sides the Fibonacci 

numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34,....  . 

The ratios of these side lengths, 

1 2 3 5 8
, , , , ,...

1 1 2 3 5
, approximate the Golden 

Ratio 
1 5

1.618
2


 . (Can you prove all 

these claims?)    
 
Explore other square tiling patterns and the 
sequences that result to approximate 
irrational numbers.  
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