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CURIOUS MATHEMATICS FOR FUN AND JOY  
 

 
 

APRIL 2016 
 

 

PROMOTIONAL CORNER: Have you an 
event, a workshop, a website, some 
materials you would like to share with the 
world? Let me know! If the work is about 
deep, joyous, and real mathematical 
doing I’ll happily mention it here. 

*** 
 
People do math videos!  
Check out Marc Chamberlain’s 
https://www.youtube.com/watch?v=bCi

QOwP4LrY. Why does sin( )x x x  

work? 

 

 
 

THIS MONTH’S PUZZLER:  It is possible to 
color the first eight counting numbers 
each either red or blue so that we never 

have three distinct integers a , b , and 

a b  all the same color. 

 
Can the same task be completed with the 
first nine counting numbers? What is the 

smallest N  so that every coloring of the 

numbers 1, 2, 3, …, N  either red or blue 
is sure to have a monochromatic triple 

a b a b   ?  
 
How does the answer change if we 

permit generic “triples” with a b ? 

(Now we need each a  and 2a  to be 
distinct colors too.) 
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RAMSEY THEORY 
 
Here is a classic result:  
 
If six university students are selected at 
random, then there is sure to be either three 
students among the six who are mutual 
friends or three students who are mutual 
strangers (or both). 
 
(We are assuming here that friendship is 
reciprocal: If Albert is friends with Bilbert, 
then Bilbert is also friends with Albert. 
Being a stranger is reciprocal too.)  
 
Here’s the reasoning: Choose one of the six 
students, Cuthbert. There are five other 
students each of which he is either friends 
with or a stranger to.  
 
Suppose Cuthbert is friends with a majority 
of these five, that is, friends with at least 
three of them. (If, instead, he is a stranger 
to a majority, then switch the words friend 
and stranger in what follows.)  
 
Among these three people, if any two are 
mutual friends, then we have a triple of 
friends: Cuthbert and those two. If none of 
those three are friends, then we have found 
a triple of strangers.  
 
The result is not true for just five people 
selected at random as seen by this graphic.  
Here each dot represents a student and a 
red edge indicates mutual friends and a 
blue edge mutual strangers. No three 
people are connected by edges all of the 
same one color.  

 
 

In terms of colored diagrams, our party 
result translates as follows:  Draw six dots 
on a page and the 15 edges between all 
possible pairs of dots. It is impossible to 
color those edges red and blue and avoid a 
monochromatic triangle.  
 

To generalize this idea let  ,R a b  denote 

the least number of dots one needs to draw 
on a page so that if we connect all pairs of 
dots with either red or blue edges, there is 
sure to be either a set of a  dots with all the 
edges among them red or a set of b dots 
with all the edges among those dots blue. 
(This is assuming that such a least number 
exists! Maybe no matter how many dots 
one draws one can always avoid red 
“cliques” of size a  and blue cliques of size 

b ?)  
 
The idea of studying the necessary size of a 
system to ensure certain sub-substructures 
exists was first formally explored by British 
mathematician Frank Ramsey (1903 – 
1930). This work is today called Ramsey 
Theory in his honor. 
 

Our party result reads as  3,3 6R  . 

(Draw six dots and color the edges between 
then red and blue. Either a red triangle is 
sure to appear or a blue one.)  
 

It is not hard to see that 2R b b    .  

 

(If we draw b  dots on a page and color the 
edges, then either one is red and we’ve 

found red clique of size 2 or all edges are 

blue and we have a blue clique of size b . 

Also,  2,R b  is not 1b   or smaller: 

coloring all the edges between 1b   dots 
blue illustrates this.) 
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Computing Ramsey numbers is still a very 
active area of research. Only these few 
values are currently known. 

 
(2, ) (3,4) 9 (4,5) 25

(3,5) 14

(3,6) 18

(3,7) 23

(3,8) 28

(3,9) 36
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(Of course,    , ,R a b R b a : just switch 

colors.)  
 

Generalizing … Set  , ,R a b c  as the least 

number of dots one needs to draw on the 
page to ensure that, in coloring the edges 
red, blue and gold, either a clique of a  dots 
with nothing but red edges between them, 

or a clique of b  dots with nothing but blue 
edges between them, or a clique of c  dots 
with nothing but gold edges between them 
is sure to appear.  
 

It is known that  3,3,3 17R  .  

 
(Draw 17 dots on a page and color each of 
the 153 edges between them either red, 
blue, or gold. Then a monochromatic 
triangle is sure to appear. Also, it is possible 
to avoid monochromatic triangles with only 
16 dots on the page.)   
  

And for full generality set  1 2, ,..., cR k k k  

as the least number of dots one needs to 
draw on a page so that, in coloring each of 
the edges between a pair of dots one of c  

colors, there is sure to be a clique of ik  dots 

with all the edges between them the i th 
color, for some i .  
  
Of course, we are assuming that this 
number exists - that there is a least number 
of dots that assures a monochromatic 
structure appears.  

 

Ramsey’s Theorem: Each  ,R a b  is indeed 

a meaningful finite number.  
 
Let’s illustrate why. 
 

The value  4,6R  does not appear on the 

list of known Ramsey numbers. But we can 
prove that it is a finite number.  
 

We have, from the list, (4,5) 25R   and 

(3,6) 18R  . Draw 25 18 43   dots on 

the page and color the edges between them 
red and blue. We shall now reason that 

either a clique of 4  dots exists with all 

edges between them red or a clique of 6  
dots exists with all edges between them 

blue. This will establish that  4,6 43R  . 

 

In our diagram of 43  dots with edges 
colored, choose one particular dot. Call it 
Dilbert. Dilbert has some red edges 

emanating from it connecting it to, say, R  
other dots. The remaining edges emanating 

from Dilbert are blue, connecting to B  

other dots, say. Here 42R B  . 
 

Now it can’t be that both 17R   and 

24B  . So either R  is at least 18  or B  is 

at least 25 . 
 

Case 18R  :   
 

Consider the R  dots that connect to Dilbert 

by red edges. Because  3,6 18R   there 

is either a red clique of 3 among these R  

dots or there is blue clique of 6  among 
them. If there is a red clique of 3, then 
including Dilbert in the clique (all edges to 
Dilbert are red) actually means we have a 

red clique of 4 , one of the two structures 

we are hoping to see for  4,6R .  If, on 

the other hand, there is a blue clique of 6 , 

then we have a blue clique of 6 ! Either way 
we have found one of the two things we are 
looking for. 

http://www.jamestanton.com/
http://www.gdaymath.com/


© James Tanton 2016 

www.jamestanton.com and www.gdaymath.com  

 

Case 25B  : 
 

Consider the B  dots that connect to Dilbert 

via blue edges. Because  4,5 25R  , 

among these B  dots there is either a red 

clique of 4  (one of the possibilities we 

were hoping for) or a blue clique of 5 . In 
the latter case, since all the edges to Dilbert 
here are blue, adding Dilbert to the clique 

of five actually makes a blue clique of 6 ! 
Again, we are sure to have at least one of 
the two structures we were looking for.  
 
In general, one can prove just this way the 
inequality: 
 

         , , 1 1,R a b R a b R a b    . 

 
Then from knowing that Ramsey numbers 
with smaller indices are finite we can 

reason that every Ramsey number  ,R a b  

is finite.  
 
Generalized Ramsey’s Theorem: Each value 

 1 2, ,..., cR k k k is finite.  

 
We have just shown that each of the values 

 ,R a b  for two colorings is a finite 

number. Let’s show how we can use this 
fact to establish that each of the numbers 

 , ,R a b c  for three colorings must also be 

finite.  
 

Consider  , ,R a b c . We want to show that 

there is a number N  so that if we draw N  
dots on the page and color the edges either 
red, blue, or gold, there is sure to be either 

a red clique of a  dots, or a blue clique of b  
dots, or a gold clique of c  dots.  
 
Sometimes when we squint our eyes, red 
and blue can start to each look purple. So a 
diagram with edges painted with three 
colors, red, blue, and gold, can look like a 

diagram with edges painted just two colors, 
purple and gold, under squinty eyes. 
 
This gives a way to bring three-colorings 
back to two-colorings.  
  

Let  ,n R a b .  (So any diagram of n  

dots with edges painted red and blue has 
either a red clique of a  dots or a blue 
clique of b  dots.)  
 

Let  ,N R n c . (So any diagram of N  

dots with edges painted purple or gold has 
either a purple clique of n  dots or a gold 
clique of c  dots.)  
 

Now draw N  dots on the page and color 
the edges red, blue, and gold. (Remember, 
we are looking for either a red clique of a
dots or a blue clique of b  dots or a gold 
clique of c  dots.) Squint your eyes and see 

only purple and gold. By our choice of N  
we’re either seeing a purple clique of n  
dots or a gold clique of c  dots. 
 
If we’re in the latter case, then we’ve found 
one of the three things we were hoping to 
see. If we’re in the former case, then we are 
seeing a purple clique of n  dots, which, 
when we unsquint our eyes, is a set of n  
dots with red and blue edges between 
them. But our choice of n  was special: it 
guarantees that either we have a red clique 

of a  dots or a blue clique of b  dots. So 
again, we are seeing one of the three things 
we were hoping to see.  
 

So  , ,R a b c  is finite a number: it is 

bounded by the number  ,R n c  with 

 ,n R a b . 

 
In general, one reasons this way to show 
that  

       1 2 3 3, , ,..., , ,...,c cR k k k k R n k k  

with  1 2,n R k k .  Now knowing that all 

the three-color Ramsey values are finite, we 
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can use this to argue that all the four-color 
Ramsey numbers are finite, which leads to 
all the five-color Ramsey numbers being 
finite, and so on. 
 

 
CONNECTIONS TO THE OPENING PUZZLER 
 
Here’s a bold claim:  
 
It is impossible to color the counting 

numbers 1, 2 ,3 , 4 , …. each one of fifty 
possible colors and avoid a monochromatic 

triple a , b , a b . (The generic case 

a b  is allowed.)   
 
(The number 50 is immaterial here: any 
finite number of colors will do!)  
 
Here’s why.  
 
We just proved that the Ramsey value 

(3,3,3,...,3)R , with fifty colors, is a finite 

value. Let N  be its value. So if we draw N  
dots on a page and color the edges using 
fifty different colors, then we are sure to 
find a monochromatic clique of three. That 
is, we’d find a monochromatic triangle. 
 
Suppose we have colored the counting 
numbers 1, 2, 3, … each one of fifty colors.  
 

Draw a dot above each of the first N  
counting numbers and draw an edge 
between each pair dots. Now color each 
edge according to the following rule: Paint 
the edge connecting the number i  to the 
number j (assume i j  here) with the 

color of number j i .   

 

 
 
A monochromatic triangle is sure to exist. 

 

 
From this triangle we have that the color of 

j i  is the same the color of k j , which 

is the same as the color of k i .   
 
But observe: 

     k j j i k i     .    

We have found three numbers a , b , and 

a b  all the same color.  
 

Exercise: Color each positive integer one 
color from a given finite set of colors. 
Must there be a monochromatic triple a , 

b , ab ?  
 

 
RESEARCH CORNER 
 

1. Let kC  be the smallest value N so that if 

we color the each of the numbers 

1,2,3,..., N  with one of k  colors there is 

sure to be a monochromatic “triple” 

a b a b   . (We just proved that 50C  

exists and, by easy extension, that each 

value kC  exists.)  

 

We have 1 2C   and 2 5C   (if you did the 

second part of the opening exercise).  
 

Can you determine any other values of kC ? 

 

2. Let kD  be the smallest value N so that if 

we color the each of the numbers 

1,2,3,..., N  with one of k  colors there is 

sure to be a monochromatic triple 

a b a b   .  
 

We have 1 3D   and 2 9D  .   

 
Can you adjust the previous proof to 

establish that the values kD  exist? 
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3. Explore coloring the positive integers 
with a finite palette of colors and 
establishing the existence of a 

monochromatic quadruple a , b , a b , 

a b , with 2 a b  .    
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