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THIS MONTH’S PUZZLER: 
 

We have that six equals 

( ) ( ) ( )4 3 12 2 2− + − + −  and negative six 

equals ( ) ( ) ( )3 2 12 2 2− + − + − . 

 
Is it true that each and every integer, 
positive or negative, is a sum of distinct 
powers of negative two?  
Can the same one integer be represented 
as a sum of distinct powers of negative 
twos in more than one way?   
 

 

 
 

ABOUT THIS ESSAY 
 
This material appears on the website 
www.gdaymath.com as Experience 11 of 
the Exploding Dots material. I share it here 
as I think the work presented here is worthy 
of wide dissemination. It shows that the 
power of Exploding Dots is an age-old idea 
and that Scottish mathematician John 
Napier took the power of a 1 2←  machine 
to great heights some four hundred years 
ago.  
 
The great Martin Gardner wrote about this 
work too in his article “Napier’s Chessboard 
Abacus.” It appears as chapter 8 in Knotted 
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Doughnuts and Other Mathematical 
Entertainments (W.H.Freeman and 
Company, 1986). But the work there is not 
at all framed in terms of a 1 2←  machine. I 
think seeing that content framed in the 
context of Exploding Dots is well worth the 
while. 
 
This essay presumes very basic familiarity 
with the 1 2←  machine. Take a few 
moments to watch the first video or two of 
Experience 1 in the Exploding Dots course 
mentioned about and you will be all set. 
 
Enjoy! 
 

 
NAPIER’S CHECKEBOARD 
 
The concept of Exploding Dots has been 
around for many centuries, though not 
necessarily visualized as dots in boxes (and 
certainly not as exploding dots).  
 
The ancient counting and arithmetic device, 
an abacus, is simply a 1 10←  machine. Its 
simplest version is just a series of rods held 
in a frame with each rod holding ten beads. 
One slides beads up rods to represent 
numbers and, in performing calculations, 
whenever ten beads reach the top of one 
rod, one slides them down (they “explode”) 
and raises one bead up on the rod one 
place to their left in their stead. 
 

 
 
Comment: A more modern abacus has a 
cross bar with five beads on each rod below 
the bar and two beads above it, with each 
of those two beads representing a group of 
five. One slides beads to touch the cross 

bar. Thus “8,” for example, is represented 
on a rod as three beads touching the cross 
bar from below and one bead touching the 
cross bar from above. This version of the 
abacus is a 1 10←  machine that has a 
special dot (a blue dot, perhaps) that 
represents five dots in a box.  
 
Four centuries ago, Scottish mathematician 
John Napier (1550 – 1617),  best known for 
his invention of logarithms, actually 
discovered and worked with a 1 2←  
machine,  but he found it useful to stack 
rows of boxes on top of one another to 
make a grid of squares, with each row being 
its own 1 2←  machine. 
 

 
  
He suggested using a physical copy this grid, 
a wooden board or square sheet of cloth 
marked into squares, and beads or 
counters.   
 
With this board, Napier showed the world 
how to add, subtract, multiply and divide 
numbers. He also felt it was useful for 
computing integer square roots of 
numbers! 
 
Read on to see how. 

Addition 
 
To add three numbers, say, 106 , 53 , and 
42 , represent each number on its own row 
of the board using counters as dots in a 
1 2←  machine. (Of course, Napier did not 
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use our language of Exploding Dots and 
their machines, but it is clear how our 
language translates to actions to do with 
physical counters on the board.)  
 

 
Then slide all the dots down to the bottom 
row and perform the usual 1 2←  explosion 
rule to read off the final answer. 
  

 
 

Subtraction 
 
Napier did not introduce the notion of an 
antidot, but suggested performing 
subtraction this way instead.  
 
To compute 106 49−  , say, represent the 
larger number on the second row of the 
board and the smaller number on the 
bottom row. 
 

 
 
Starting at the left of the second row, 
perform unexplosions so that each dot in 

the bottom row has at least one dot above 
it. 
 

 
 
Now subtract dots from the second row, 
one for each dot that sits on the first row. 
We see the answer 57  appear. 
 

 
 
Question: The picture below shows how we 
performed subtraction in the 1 2←  
machine using antidots. Can you see a 
correlation of the two approaches? 
 

 
 
Question: Consider a 1 2←  machine fully 
loaded as shown. 
 

 
 
Do you see if you perform all the explosions, 
all the dots disappear? This shows that, in 
some sense, the infinitely long base-two 
number 111112  represents the number 
zero. (See the website chapter on Some 
Unusual Mathematics for Unusual Numbers 
for more on this.) 
 
This means we can add 11112  to a 
picture of a negative number and not 
change the number. For example, we see 
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that another representation of 49−  in a 
1 2←  machine is 11111001111 . 
 

 
 
Thus every negative number can be 
presented in a 1 2←  machine without the 
use of any antidots. (The trade-off is that 
one must then use an infinite number of 
dots!)  
 
Compute 106 49−  in Napier’s 
checkerboard again but this time thinking of 
it as an addition problem, ( )106 49+ − , 
that can be presented on the board using 
only dots.   
 

Multiplication 
 
This is where Napier’s brilliance starts to 
shine.  
 
To perform multiplication, Napier suggested 
viewing the columns of the checkerboard as 
their own 1 2←  machines! This way, each 
dot in a box represents a product. For 
example, in this picture the dot has value 
the product 16 4 64× = . 
 

 

 
What is lovely here is that dots in the same 
diagonal have the same product value: 
64 1 32 2 16 4 1 64× = × = × = = × . So in 
addition to doing 1 2←  explosions 
horizontally and vertically, we can also slide 
dots diagonally and not change the total 
value represented by dots on the board.  
 
Here’s a picture of one copy of 19  plus four 
copies of 19 , that is, here is a picture of 
19 5× . 
 

 
 
Slide each dot diagonally downward to the 
bottom row: this does not change the total 
value of the dots in the picture. The answer 
95  appears. 
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More complicated multiplication problems 
will likely require using a larger grid and 
performing some explosions. For example, 
here is a picture of 51 42× .  
 

 
 
Sliding gives this picture 
 

 
 
and the bottom row explodes to reveal the 
answer 2142 . 
 
 

 
 
 
Question:  One can do polynomial 
multiplication with the checkerboard too! 
(One needs two different colored counters: 
one for dots and one for antidots.) Do you 
see how this picture represents 

( )( )2 32 1 2 2x x x x− + − + ? Do you see 

how to get the answer 
5 4 3 22 6 6 2x x x x x− − + − +  from it? 

 

 
 
Question:How would you display the 
product  
( )( )2 3 41 1x x x x x− + + + + + ? 

 What answer does it give?  
 

Division 
 
Earlier we computed 19 5×  and got this 
picture for the answer 95 . 
 

 
 
If we were given this picture of 95  first and 
was told that it came from a multiplication 
problem with one of the factors being 5 , 
could we deduce what the other factor 
must have been? That is, can we use the 
picture to compute 95 5÷ ? 
 
Since 5 4 1= +  we will need to slide 
counters on this picture so that two copies 
of the same pattern appear in the shaded 
two rows. 
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Slide the leftmost dot up to the top shaded 
row and we see it “completes” the 16  
column. Let’s not touch the counters in that 
column ever again. 
 

 
 
We are now left with a smaller division 
problem: dividing 8 4 2 1+ + +  (that is,15 ) 
by 5 . 
 
Slide its leftmost dot up to the top shaded 
row. This completes the 2 s column and 
let’s never touch the counters in that 
column again. 
 

 
This leaves us with a smaller division 
problem to contend with: 4 1+  divided by 
5 . Slide its leftmost dot up to the top 
shaded row to complete the 1s column.    
 

 
 
We see that we have now created the 
picture of 19 5×  and so 95 5 19÷ = .  
 
This loosely illustrates the general principle 
for doing division on Napier’s checkerboard: 
 
Represent the dividend by dots in the 
bottom row and the divisor by shaded rows.  
 
Slide the leftmost dot to the top shaded 
row.  
 
Complete the leftmost column of dots 
possible in some way you can (you might 
need to unexplode some dots) and when 
done never touch those dots again. What is 
left is a smaller division problem and repeat 
this procedure for the leftmost dot of that 
problem. 
 
The procedure described here is loose as 
our computation 95 5 19÷ =  ran into no 
difficulties.   
 
Let’s try 250 13÷  for something more 
involved. Here’s its setup. 
 

 
 
Slide the leftmost dot to the highest shaded 
row. Doing so shows we need to work with 
the 16 s column, but it is not complete. 
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We can complete it by sliding the current 
leftmost dot into that column. (That’s 
convenient!) 
 

 
Now we have a smaller division problem to 
work on. Slide the leftmost dot up to the 
highest shaded row. 
 

 
 
What’s the leftmost column we can 
complete right now without ever touching 
those dost of the16 s column? We see that 
there is no means complete the 8 s column.  
(What dot can we slide into its top?)    
 
There is no means to complete the 4 s 
column either.  (How do we slide a dot into 
that 4 4×  cell?)  
 
So let’s work on the 2 s column. I can see by 
sliding the dot in the 8 s column and 
performing a (horizontal) unexplosion from 
the 4 s column we can fill up the 2 s 
column.      
 
 

 
 
The 2 s column is a bit overloaded. Let’s 
unexplode one of the dots the top pair 
(horizontally). 
 

 
 
 
All the action is now left in the 1s column. 
What can we do to make that column 
complete? (Remember, dots in completed 
columns are never to be touched again.) 
Let’s unexplode downwards a number of 
times. 
 

 
 
This does complete the 1s column, but with 
three ones too many.  
 
If we had three less dots— 247  instead of 
250 —then we would have, right now, a 
picture of 19 13×  showing that 
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247 13 19÷ = .  So it must be then that  
250 13÷  has a remainder of three and so  
 

 3250 13 19
13

÷ = +  . 

 
 
Question: Compute 256 10÷  via Napier’s 
method. 
 
Question: Is it possible to do polynomial 
division with Napier’s checkerboard? (Can 

one compute 1
1 x−

?)  

 
 

Wild Explorations 
 
Exploration 1: Squares and Square 
Roots 
 
Napier claimed that his checkerboard is also 
capable of computing integer square root 
approximations to numbers. For example, 
his checkerboard can show that 

2145 12 1= +  with 12  being the integer 
part of 145 , and that 21000 31 39= +  

with 31 being the integer part of 1000 , 
and so on. 
 
To get a sense of how one might do this, 
consider first this picture of 11 11×  to give 
the square number 121. 
 

 
 
 

Notice the symmetry about the north-west 
diagonal: the picture has a pattern of dots 
on the bottom row, the same pattern of 
dots in the right column, and the same 
pattern appears on the diagonal too. Also, 
each dot in the interior of the picture sits 
above a dot in the bottom row and to the 
left of a dot in the rightmost column. All 
pictures of numbers squared will have such 
symmetry. 
 
Sliding the dots downwards reveals 11 11×  
as 121. 
 

 
 
Napier claimed that you can reverse this 
process and reconstruct the symmetric 
pattern of dots to see that 121 is eleven 
squared.  
 
Can you indeed slide the dots that 
represent 121 on the bottom row 
diagonally upwards (or do some 
unexplosions and slide unexploded dots 
upwards) to recreate a picture of 11 11× ?  
The key is to focus on the northwest 
diagonal. Can you do this in a systematic 
way that you could explain your steps easily 
to a friend? 
 

 
  
Use your method with the number 145  
represented on the bottom row. Can you 
construct the picture of 12 12×  (without 
knowing that one is looking for 12  to begin 
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with) along with one extra dot in the 1 1×  
cell?   
 
Use Napier’s checkerboard to show that 

21000 31 39= + . (Again, presume you 
don’t know that you are looking for the 
number 31.)   
 
Exploration 2: Negative Numbers 
 
In his book The Art of Computer 
Programming, Vol. 2. (1969) Donald Knuth 
introduces the negabinary system. Here 
every integer, positive and negative, is 
represented as a sum of powers of 2−  
using the coefficients 0  and 1. 
 
In the language of Exploding Dots, 
negabinary is a 1 2− ←  machine where 
two dots in one box explode to be replaced 
by one antidot, one box to the left, and 
similarly two antidots in a box explode to be 
replaced by one dot, one box to the left. 
 

 
But to avoid the appearance of antidots in 
the representations of numbers we observe 
that one antidot in a box is equivalent two 
dots, one in the original box and one, one 
place to the left. 
 

 
  
 

Placing six dots in the 1 2− ←  machine and 
using this convention to avoid antidots 
gives the negabinary code 11010  for six. 
 

 
 
 
The code for 6−  in this machine is 1110 . 
 

 
 
Work out the negabinary codes of all the 
integers from 10−  to 10 . Are there any 
patterns to be noticed and explained? (For 
example, which numbers give codes with an 
even number of digits? Which with an odd 
number of digits? Can you find a rule for 
divisibility by two? By three? Which 
numbers give palindromic codes?) 
 
The 1 2− ←  machine shows that it is 
possible to represent each integer, positive 
or negative, in base 2−  using only the digits 
0  and 1 in at least one way. Prove that no 

http://www.gdaymath.com/


© James Tanton 2018 
 

www.theglobalmathproject.org          www.jamestanton.com         www.gdaymath.com  

integer can have two different base 2−  
representations using the digits 0  and 1 .   
 
Napier wasn’t using two differently colored 
counters in his work, one for dots and one 
for antidots. To follow suit, note that we 
can rephrase the rules of the 1 2− ←  
machine solely in terms of dots. 
 

 
 
Knuth suggests using Napier’s checkerboard 
with columns and rows labeled with values 
the powers of 2−  , representing numbers 
with counters in negabinary, and using the 
above two rules on the board (along with 
diagonal sliding) to manipulate pictures and 
thus do calculations.  
 
For example, here is a picture of ( )6 6× − . 

Do you see how to obtain the answer 36−  
from it? 
 

 
 
 

Compute ( )6 7+ −  and ( )6 7− −  and 

( )6 7× −  in this negabinary checkerboard. 
 
The number negative one has code 11 in 
negabinary. So to change the sign of a 
number in negabinary we can multiply that 
number by 11, that is, by 10 1+ . Now 
multiplying a number by 1 does not change 
the code of the number and multiplying by 
10  shifts all the digits of code one place to 
the left. So to change the sign of a number 
in negabinary we can write down the code 
for the number, write a same code with a 
zero addended, and add those two codes. 
 
Compute ( )6 7− −  as an addition problem 

of three terms: the code for 6 , the code for 
7− , and the code for 7−  with a zero 

addended, all added together. Did you get 
the same answer as you did in part c)? 
   
Is there a way to perform divisions on this 
board too? (Try ( )38 13÷ − .) 
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