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REFLECTION MATH! 
 

A popular discovery activity in the middle school curriculum proceeds as follows: 

 

A ball is shot from the bottom left corner of a 53× billiard table at a 45 degree 
angle. The ball traverses the diagonals of individual squares drawn on the table, 
bouncing off the sides of the table at equal angles. Into which pocket, A, B, or C, 
will the ball eventually fall?  

 
Experiment with tables of the different dimensions above. What do you notice 
about those tables that have the ball fall into the  top-left pocket A? Into the  
top-right pocket B? Into the  bottom-right pocket C? Test your theories with more 
tables. 
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After some experimentation one notices that a ball bouncing in an mn× table with 

both n and m odd ends in pocket B; with n even and m odd in pocket A; and with n 
odd and m even, pocket C. Matters are a tad more obscure if both n and m are even. 
(You may have noticed that I avoided such tables among the previous diagrams.)  

 

Often the investigation ends here, but there are some interesting questions about 

this activity that should be asked – and answered!  

 

Question 1: Must every ball land in either pocket A, B, or C? Is it possible for a ball 

to return to start? Is it possible for a ball to enter an “infinite loop” and never fall 

into a pocket? 

 

Question 2: Color the cells of each table black and red like a checkerboard. What 

do you notice about the path of the ball across the red cells? Across the black 

cells? Imagine (do not draw!) a 2913× table. Use what you observe to explain why 

the ball can only possibly fall into pocket B. Explain the observations made at the 

top of this column.  

 

Question 3: Did you notice that the ball passes through each and every cell for 

each of the tables above? Not every billiard table has this property. Find a 

condition on the numbers n and m that ensures that this will be the case for an 
mn×  table. 

 

Question 4: Develop a theory that will predict into which pocket the ball will fall if 

both n and m are even. 
 

ANOTHER TIDBIT: THE SAME PROBLEM TWICE 

Answering the same question in more than one way can be incredibly illuminating. 

Behold!  

 

A dog, starting at point A wishes to walk to point B via a path that first visits a 
wall. (Assume the dog will walk along two straight line segments to do this.) 

 
Locate the point P on the wall that gives the shortest possible path from A to P to 
B. 
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ANSWER ONE: Here’s a sneaky trick. Let B’ be the reflection of point B on the 
other side of the wall. Ignoring the issue that it is impossible for the dog to walk 

through the wall, notice that any path from A to a point P to B’ is matched by a path 

of equal length from A to P to B, and vice versa.       

 
Clearly the shortest path from A to B’ is the straight line path, making equal angles 

as shown. Consequently the shortest path from A to B via the wall is the one that 

“bounces off” the wall at equal angles.  

 
ANSWER TWO: Recall that an ellipse with foci points A and B is the curve with the 

property that all points P on the curve give the same path length A to P to B.  

 

Draw an ellipse about the points A and B. If the ellipse is too small it won’t reach 

the wall and give an appropriate dog walking path. If it is too big, it can be replaced 

a smaller ellipse giving a shorter path from A to P to B. Thus the point P we seek is 

the location where the smallest ellipse possible just touches the wall. That is, the 

wall represents a tangent line to an ellipse and P is the point of contact. 

 

 
 

In both answers the point P must be the same. We have thus proven the famous 

reflection property of an ellipse! Any path from one focus of an ellipse to the 

other via a point on the ellipse makes equal angles to the (tangent line) to the 

ellipse. Thus a ball thrown from one focus to any point on the wall of the ellipse will 
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head directly through the second focus. Sound waves in the elliptical Mormon 

Tabernacle, UT, and the Whispering Gallery in the United States Capitol building, 

D.C., operate this way! (Notice that the sound waves will bounce back and forth 

infinitely often between the two foci!) 

 

RESEARCH CORNER: THE OTHER REFLECTION PROPERTIES? 

Devise other problems that can be solved in two different ways to prove the 

famous reflection properties of a parabola and a hyperbola.   

 

 

 

THE FULL STORY  
 

This charming billiard activity is simply super. It provides many avenues of 

exploration for both young and advanced students (and if one wants to explore 

billiard action on general polygonal-shaped tables, one can enter the world of 

current active research!).  

 

The questions I pose in the newsletter are not usually examined at the school level. 

When given permission to think openly students of all ages will ask them!  

 

Question 1: Must every ball land in either pocket A, B, or C. Is it possible for a ball 
to return to start? Is it possible for a ball to enter an “infinite loop” and never fall 
into a pocket? 
 

Notice that the motion of the ball is “time reversible:” If the ball is currently 

traversing one particular cell (in a particular direction), then there is absolutely no 

doubt from which cell it just came. This observation is key. 

 

Could the ball enter the same square twice in the same direction? No! Each time the 

ball enters a “repeat square” it must have come from a previous repeat square. 

There is no first cell the ball can visit twice.  

 

Could the ball enter the same square twice in the opposite directions? No! To do 

this the ball must have traversed a previous square twice in opposite directions, and 

so, again, there is no first cell the ball can traverse twice in this way. In particular, 

the ball will never return to the bottom left cell and return to start. (Could a ball 

traverse the same square but along different diagonals?) 
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As there are only finitely many cells in the grid and no cell can be visited twice 

along the same diagonal, the ball’s path must terminate. This establishes that the 

ball is sure to fall into one of the pockets A, B or C.  

 

Question 2: Color the cells of each table black and red like a checkerboard. What 
do you notice about the path of the ball across the red cells? Across the black 
cells? Imagine (do not draw!) a 2913× table. Use what you observe to explain why 
the ball can only possibly fall into pocket B. Explain the observations made in the 
paragraph at the top of this column. 
 

This question suggests a popular approach to analyzing billiard motion. (See XXXX, 

for instance.) One sees that the ball traverses red cells only along northwest 

diagonals and the black cells along southwest diagonals (or vice versa), and matters 

about the ball’s behavior fall into place. But the analysis is slightly easier to color 

instead the grid points of the table alternately two colors in a checkerboard 

pattern. (We’ve chosen the colors black and white here.) 

 

 
 

If we assume that the start corner is colored black, then it is clear that the ball 

will only ever visit black grid points. We also see:  

 

If n and m are both odd, then pockets A and C will be white and pocket B 
black. The ball must fall in pocket B.  

 

If n is even and m odd, then only pocket A is black. The ball must fall there. 
 

If n is odd and m even, only pocket C is black. 
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When n and m are both even, each corner cell is black. This case requires further 
analysis, which we shall conduct in a moment.  

 

 

Question 3: Did you notice that the ball passed through each and every cell in each 
of the tables above? Not every billiard table has this property. Find a condition on 
the numbers n and m that ensures that this will be the case for an mn×  table. 
 

Let N be the number of cells visited by the bouncing ball. We certainly 

haveN nm≤ . 

 

Now the ball moves left and right (as well as up and down) about the table to 

eventually fall into one of the pockets on the left side or the right side of the 

table. Looking at only the horizontal component of the motion of the ball, it is clear 

that N must be a multiple of m. By the same token, looking at the vertical 
component of the ball’s motion, N must also be a multiple of n. If n  and m  are 

coprime (that is, share no common factors), then we have that N is a multiple of 

the product mn , and so N mn≥  as well.  

 

This shows that N is nm , the total number of cells in the grid if n  and m  share no 

non-trivial factors.  

 

As we shall see next, if the numbers m  and n  are not coprime, if both are even, 

for instance, then some cells are sure to be missed.  

 

Question 4: Develop a theory that will predict into which pocket the ball will fall if 
both m  and n  are even. 
 

A 4x6 table, for example, is really just a 2x3 table in disguise: 
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and so the ball will fall into pocket A. A 10x50 table is really a 5x25 table in 

disguise (pocket B) and a 200x4000 table is really 1x20 table in disguise (pocket C). 

 

In general, if n and m have greatest common factor d :  

 

 
bdm

adn

=

=
   

 

then an mn×  table is really an ba×  table in disguise with a  and b  coprime. The 

ball will traverse precisely abd  cells (why this number?) and will land into pocket A, 

B, or C according to whether a  and b  are odd or even as dictated before.  

 

MORE BILLIARDS 

 

The mathematics behind the billiards game is surprisingly rich. 

 

Suppose we start the billiard ball at any grid point of the table, setting it in motion 

along the diagonal of a cell. Assume that all four corners now represent pockets.  

 

 
 

 

In playing with a 6 7×  table, for example, one garners the impression that every 

starting point and starting direction yields a path ending in a pocket. Is the same 

true for a 14 25×  table? A 6 8×  table? What can one say about the behavior of 

billiard balls on general n m×  grids? Perhaps play with some examples before 

reading on.  

 

There are many subtleties in this exploration and a complete analysis of the 

situation requires some serious effort. We present here some partial results worth 

pondering upon just to get things going. Again assume we have again colored the 

grid points of ann m×  table in a black and white checkerboard pattern, with the 

bottom-left corner black. 
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1. The ball only visits grid-points of the same color as its starting grid-point. 

 

2. If a ball starts in a corner, it will terminate in a corner. Moreover, if 

( )gcd , 1n m = , the ball will fall into the only remaining pocket of the same 

color as its starting pocket and will pass through every cell of the table 

before doing so. 

 

(We have essentially already established this.)  

 

3. If n and m  are both even, then any ball that starts at a white grid-point 

enters an infinite loop. 

 

4. If ( )gcd , 2n m =  and the ball starts at a white grid-point, then the ball 

enters an infinite loop that traverses each and every cell of the table. 

 

5.   If ( )gcd , 2n m = , then any ball starting at a black grid-point will fall into a 

corner.  

 

In playing with 4 4×  and 4 8×  tables, for example, one can find infinite loops that 

start at a white grid-point and do not pass through every cell of the table, and 

paths that start at black grid-points that do not fall into corners. The condition 

that ( )gcd , 2n m =  is important here.  

 

As this is an incomplete list of results, what then is the ultimate theorem that 

completely describes diagonal billiard-ball motion in rectangular tables?  
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RELECTION PROPERTIES OF CONICS 

 

One can go remarkably far in solving optimization problems via reflections. For 

example, consider the following dual problem to the dog-walking problem:  

 

Two points A and B lie on opposite sides of a line with point A slightly closer to the 
wall than point B.  
 

 
Find the location of the point P on the line that maximizes the difference 
| | | |PB PA− . 

 
 

ANSWER ONE: This time reflect the point A across the line to the point A’. Let P 
be the point on the line such that P, A’ and B are collinear. For this point P, the 
value of | | | |PB PA−  is the length x shown.  

 

 
 

For any other point Q on the line, the analogous quantity is the difference of 

lengths b a−  shown. By the triangular inequality, x a b+ >  and so x b a> − . The 

point P thus gives the maximal value for this quantity and is the point we seek. 
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Notice that this solution, like the answer to the first problem, relied on 

constructing the straight line between one of the points A and B and the reflection 
of the other. It too produces congruent angles.  

 

ANSWER TWO: Recall that a hyperbola with foci A and B is the locus of points P 
with the property that | | | |PB PA−  adopts a fixed value. (The largest this value 

can be is | |AB , the smallest is | |AB− . The cases with | | | |PB PA− positive or 

negative represent the two different branches of the hyperbola. The case 

| | | | 0PB PA− =  corresponds to the degenerate example of single straight line, the 

perpendicular bisector of AB .)  

 

Consider the locus of points P  satisfying | | | |PB PA k− =  for a given value k  with 

0 | |k AB≤ ≤ . Each is a branch of a hyperbola that “wraps around” A , with 0k =  

yielding the straight perpendicular bisector. As k increases, we can find the “last” 

hyperbolic branch to touch the line. It gives the highest possible value of 

| | | |PB PA−  for points on the line, and this branch is tangent to the line.  

 

 

 
 

But we know that this point of contact P is the point obtained by extending the line 

segment 'A B  and that, for this point, congruent angles appear. We have 

established the reflection property of the hyperbola: 

 
 A ray of light directed from one focus of a hyperbola reflects off the hyperbola 
directly away from the second focus. 
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We can go further. Let A and B be two points in the plane. Then there is an infinite 

family of ellipses with A and B as foci and an infinite family of hyperbolae, also with 

A and B as foci.  

 

Let P be an arbitrary point in the plane and consider the tangent line to an ellipse 

with foci A and B that passes through P. This point solves the minimization problem 

(the dog-walking problem) for that line and we have congruent angles.  

 
Now draw a perpendicular line through P to see that the same diagram solves the 
maximization problem that defines the reflection property of a hyperbola!  
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This establishes that our two infinite families of ellipse and hyperbolae sharing the 

same foci are orthogonal: whenever one of each curve intersect at a point P their 

tangent lines at that point are perpendicular.  

 

Now deduce that the infinite families of ellipses and hyperbolae are orthogonal. 

(That is, deduce that at each point in the plane, the ellipse and the hyperbola that 

each pass through that point intersect at that point at ninety-degree angles.) 

 

We are left with one question:  

 

Is there a minimization or maximization problem that identifies the 
reflection property of a parabola? 

 

(For the study of ellipses we considered two points A  and B on the same side of a 

line, and for hyperbolae points A  and B  on opposite sides of a line. What is the 

“intermediate” situation?) 

 

Comment: The reflection properties of conics can also be explored/discovered 

through some activities in folding paper. See Appendix II of THINKING 
MATHEMATICS! Volume 4.  
 

 

OTHER REFLECTION CHALLENGES:  

 

The dog-walking challenge can be posed another way: 

 

Abigail and Beatrice stand at positions A and B, respectively, in a squash 
court. Abigail wishes to hit a ball against the wall shown so that it bounces 
off and heads directly towards Beatrice. Describe the exact location of a 
point P along the wall towards which Abigail should aim to accomplish this 
feat.  (Assume that Abigail and Beatrice live in an ideal world in which air 
resistance, friction, and inelasticity have absolutely no effect on the motion 
of bouncing balls.) 
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The point P  that offers a path with angle of incidence matching angle of reflection 

does the trick. And, as we have seen, Abigail can find this special point by imagining 

that the wall is a mirror and simply aiming for Beatrice’s reflection.  

 

Question: Explain why, in ideal circumstances, a ball or light ray bouncing from a 

(mirrored) wall does so with equal angles of reflection. 

 

 

Young students typically delight in thinking about a more complicated version of the 

previous challenge:  

 

Abigail and Beatrice again stand at positions A and B, respectively, in a 
squash court, but this time Abigail wishes to make use of all three walls of 
the court. She hopes to hit a ball against wall 1 so that it then bounces off 
wall 2 to hit wall 3 and then head directly toward Beatrice. Describe the 
exact location of a point P along wall 1 towards which Abigail should aim to 
accomplish this amazing feat.  

 

 
Abigail solves this by aiming for the reflection of the reflection of the reflection 

of Beatrice.  
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This problem has some rich variations:  

 

CHALLENGE 1: Given any point in the interior of a rectangular billiards 
table describe how to hit the ball so that it is sure to return to start.  

 

 
 

Under what conditions, if the ball were allowed to stay in motion, does the 
ball retrace precisely the same quadrilateral path over and over again in an 
infinite loop? 

 

CHALLENGE 2: Suppose we are given an acute triangle.  
 

a) Show that there is an inscribed triangle with one vertex on each side of the 
original triangle of shortest perimeter.  

 
This problem was first posed, and solved, by Italian priest and scholar Giovanni 

Fagnano (1715-1797). It is today known as Fagnano’s Problem. The internet offers 

plenty of information about it.  

 
b) Show that this inscribed triangle is the path of a ball bouncing inside the 

triangle caught in an “infinite loop.” 
 

c) Does an obtuse triangle also have an inscribed triangle of shortest 
perimeter? 

 


