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A triple of integers ( , , )a b c is called a Pythagorean triple if 2 2 2a b c+ = . For 

example, some classic triples are ( )3,4,5 , ( )5,12,13 , ( )7,24,25 . I am personally 

fond of ( )20,21,29  and ( )119,120,169 . 

 

Is there an easy way to find examples of such triples? Why yes! Just look at an 

ordinary multiplication table to find them! 

 
 

Choose any two numbers on the main diagonal (these are square numbers) and the 

two identical numbers to make a square of chosen figures. Sum the two square 

numbers, take the difference of the two square numbers, and sum the two identical 

numbers. You now have a Pythagorean triple! e.g. 
 

2 2 2

25 4 21

10 10 20 20 21 29

25 4 29

a

b

c

= − =

= + = ⇒ + =

= + =

 

 

As another example, choose 36 and 1 to obtain: 
 

2 2 2

36 1 35

6 6 12 12 35 37

36 1 37

a

b

c

= − =

= + = ⇒ + =

= + =

 

 

Question 1: Which two square numbers give the triple (3,4,5)? Which give the 

triples (5, 12, 13) and (7, 24, 25)? 
 

Question 2: Why does this trick work? 
 

Tough Challenge: This method fails to yield (9,12,15) but if the common factor of 

three is removed we do obtain (3,4,5). Show that every Pythagorean triple with no 

shared factors between the three terms does indeed appear via this method. 
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PYTHAGORAS MEETS THE THIRD DIMENSION 

A classic problem in geometry is to work out the length of the longest diagonal in a 

rectangular box. For example, what is the distance between points A and B in this 

box? 

 
One application of the Pythagorean theorem shows that the length of the diagonal 

on the base of the figure is 5 units long. A second application of the theorem using 

the shaded triangle yields the length we seek as 13 units.  
 

In general, precisely this argument shows that the length of the longest diagonal d 

in an a b c× ×  rectangular box satisfies: 
2 2 2 2d a b c= + +  

 

This is just one way to think of the Pythagorean theorem extended to the third 

dimension. 
 

Consider the triangle sitting inside a rectangular box as shown. What is its area? 

 
We can compute this with relative ease. (The algebra is a tad messy – but it is 

worth plowing through.). Start by removing the three right triangles about the top 

front corner of the box to give a clearer view. 
 

Draw in an altitude for the triangle and label the lengths x, y, and h as shown: 

 

Do you see that 2 2 2 2x h b c+ = +  and  2 2y x a c+ = + ? Do you also see that 
2 2 2 2y h a b+ = + ?  Let’s play with this third equation using the first two for support.  
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We have:  

( )
2

2 2 2 2 2a c x h a b+ − + = +  

So: 
2 2 2 2 2 2 2 22a c x a c x h a b+ − + + + = +  

yielding: 
2 2 2 2 2 2 22 2x a b x h c b c+ = + + − =  

Thus:  
2

2 2

c
x

a c
=

+
 

Now solve for 2h : 
4

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

c
h b c x b c

a c

a b b c a c

a c

= + − = + −
+

+ +
=

+

 

(Yick!) 

Now we’re all set to work out the area of the triangle: 2 21

2
A a c h= × + × . (“Half 

base times height.”) To avoid square roots let’s compute instead 2A : 

 

2 2 2 2 2 2 2 2 2 2

2 2 2

1 1
( ) ( )
4 4

1 1 1

2 2 2

A a c h a b b c a c

ab bc ac

= + = + +

     = + +     
     

 

 

Notice that each term squared is the area of one of the right triangles on the side 

of the rectangular box. So what have we got?  

 

A triangle of area A sits across three mutually perpendicular right triangles. 

If these triangles have areas B, C, and D, then:    2 2 2 2A B C D= + + . 

 
 

Exercise: A triangle crosses the x-, y- and z-axes at positions 3, 5 and 8. What is 

its area?  

 

This alternative 3-D version of Pythagoras’s theorem is not particularly well known! 
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RESEARCH CORNER:  

 

The following box has the property that each side-length is an integer and each 

diagonal across a face is an integer.  

 
 

Challenge1: Find another example of such a box.  

 

Challenge 2: Unfortunately, the length of the longest diagonal inside this box, 

73225 , is not an integer. No one on this planet currently knows an example of a 

box with all side lengths and all diagonals integers. For world fame, can you find 

one?  

 

****** 

 

HARD STUFF:  
WHY DOES THE MULTIPLICATION TABLE TRICK WORK? 
The claim is that every Pythagorean triple ( , , )a b c  with 2 2 2a b c+ =  and a, b 

and c sharing no common factor can be written in the form: 

 

  

2 2

2 2

2

a m n

b mn

c m n

= −

=

= +

 

 

For some pair of integers m andn.  

 

e.g.  (3,4,5) comes from choosing m = 2 and n = 1. 

 (5,12,13) from m = 3 and n = 2. 

 (7, 24, 25) from m = 4 and n = 3. 

 

It is easy to see that if a, b and c are of this form, then we have a 

Pythagorean triple: 
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2 2 2 2 2 2

4 4 2 2 2 2

4 4 2 2

2 2 2

2

( ) (2 )

2 4

2

( )

a b m n mn

m n m n m n

m n m n

m n

c

+ = − +

= + − +

= + +

= +

=

 

 

Proving that every triple (a,b,c) – with no common factors – has entries of 

this form is tricky. Here’s a proof: 

 

THEOREM: Suppose 2 2 2a b c+ =  with ( , , )a b c  a triple of integers with no 

common factors. Then  
2 2

2 2

2

a m n

b mn

c m n

= −

=

= +

 

 

Proof:  

 

1. The numbers a, b, and c cannot all be even. (Otherwise they have a 

common factor of two.) So at least one of the numbers is odd. 

 

2. If a and b are both even, then 2 2 2c a b= +  is even, making c even. We 

cannot have this. So one of a or b (or both) is odd.  

 

Without loss of generality, let’s say that a is an odd integer. 

 

3. If b is odd, then ( )2 2 2 2 2 2(2 1) (2 1) 4 2a b k r k r k r+ = + + + = + + + +  for 

some numbers k and r. This means that 2c  is a square number that is 

two more than a multiple of 4. This is impossible!  

 

Reason: Either c is a multiple of four, it is one more than a multiple of 

four, two more than a multiple of four or three more than a multiple of 

four.  In all these cases, we never get that  2c  is two more than a multiple 

of four! 
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2 2

2 2

2 2

2 2

(2 ) 4

(2 1) 4( ) 1

(2 2) 4( 1)

(2 3) 4( 3 2) 1

q q

q q q

q q

q q q

=

+ = + +

+ = +

+ = + + +

 

 

 

So we must have a odd, b even making c odd. 
 

4. Now: 2 2 2a b c+ =  which means: 

 

( )( )2 2 2b c a c a c a= − = − +  

 

But b is even and so is divisible by two. So 
2

2 2 2

b c a c a− +    =    
    

 is a valid 

equation involving integers. (Recall that a and c are odd.)  

 

 

Now comes the really tricky part! 

 

5. If  
2

c a−
 and 

2

c a+
 are both multiples of a common number k then 

their sum, which is c and their difference, which is a, would also be 

multiples of k. And since 2 2 2b c a= − , 2b  would be also be a multiple of 

k and AFTER SOME TRICKY THOUGHT ABOUT HOW FACTORS OF 

NUMBERS WORK, this means that b itself would have to be a multiple 

of k. This is impossible since a, b and c have no common factors except 

1k = . So: 

 

2

c a−
 and 

2

c a+
 have no common factors. 

 

6. SOME MORE TRICKY THOUGHT ABOUT HOW FACTORS WORK 

gives … 

 

Since 
2

c a−
 and 

2

c a+
 have no factor in common yet their product is a 



© 2009 James Tanton 

square number  (namely 
2

2

b 
 
 

), this can only happen if each of 
2

c a−
 and 

2

c a+
 are themselves square numbers: 

 

  

2

2

2

2

c a
n

c a
m

−
=

+
=

 

 

Adding and subtracting gives … 

 

  
2 2 2

2 2 2

c m n

a m n

= +

= −
 

 

Solving for 2b  gives: 

  
2 2 2 2b c a mn= − = . 

 

We’re done!         □ 

 

COMMENT: The tricky number theory used here is based on the following 

principles: 

 

1. Every number breaks down into a product of primes.  

 

Thus when consider a common factor k of a set of numbers, it suffices to 

assume we are considering a factor that is a prime number. 

 

2. Primes p has the property that if a product MN is a multiple of p, 

then either M is a multiple of p or N is (or both). 

 

Thus, if 2R MN= , with M and N sharing no common factors, then any prime 

factor p of R either goes into M or N (but not both). And since 2p  goes into 
2R , then this means that 2p  actually goes into either M or N.  

 

Also, all the prime factors of M and of N go into 2R  and hence R.  
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All in all, this means that the prime factors of M must come squared making 

M a square number, and the prime factors of N come squares making N a 

square number if we hope 2R MN=  to be true. 

 
 

FINAL COMMENT: All of this tricky number theory is explained with greater 

detail and greater clarity in Volume 2 of THINKING MATHEMATICS! available for 

purchase from www.jamestanton.com.  
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