PUSHING PYTHAGORAS

© 2009 James Tanton
A triple of integers (a, b, c) is called a Pythagorean triple if $a^{2}+b^{2}=c^{2}$. For example, some classic triples are $(3,4,5),(5,12,13),(7,24,25)$. I am personally fond of $(20,21,29)$ and $(119,120,169)$.

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them!

x	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	8	10	12	14
3	3	6	9	12	15	18	21
4	4	8	12	16	20	24	28
5	5	10	15	20	25	30	35
6	6	12	18	24	30	36	42
7	7	14	21	28	35	42	49

Choose any two numbers on the main diagonal (these are square numbers) and the two identical numbers to make a square of chosen figures. Sum the two square numbers, take the difference of the two square numbers, and sum the two identical numbers. You now have a Pythagorean triple! e.g.

$$
\begin{aligned}
& a=25-4=21 \\
& b=10+10=20 \quad \Rightarrow 20^{2}+21^{2}=29^{2} \\
& c=25+4=29
\end{aligned}
$$

As another example, choose 36 and 1 to obtain:

$$
\begin{aligned}
& a=36-1=35 \\
& b=6+6=12 \quad \Rightarrow 12^{2}+35^{2}=37^{2} \\
& c=36+1=37
\end{aligned}
$$

Question 1: Which two square numbers give the triple $(3,4,5)$? Which give the triples $(5,12,13)$ and $(7,24,25)$?

Question 2: Why does this trick work?
Tough Challenge: This method fails to yield $(9,12,15)$ but if the common factor of three is removed we do obtain $(3,4,5)$. Show that every Pythagorean triple with no shared factors between the three terms does indeed appear via this method.

PYTHAGORAS MEETS THE THIRD DIMENSION

A classic problem in geometry is to work out the length of the longest diagonal in a rectangular box. For example, what is the distance between points A and B in this box?

One application of the Pythagorean theorem shows that the length of the diagonal on the base of the figure is 5 units long. A second application of the theorem using the shaded triangle yields the length we seek as 13 units.

In general, precisely this argument shows that the length of the longest diagonal d in an $a \times b \times c$ rectangular box satisfies:

$$
d^{2}=a^{2}+b^{2}+c^{2}
$$

This is just one way to think of the Pythagorean theorem extended to the third dimension.

Consider the triangle sitting inside a rectangular box as shown. What is its area?

We can compute this with relative ease. (The algebra is a tad messy - but it is worth plowing through.). Start by removing the three right triangles about the top front corner of the box to give a clearer view.

Draw in an altitude for the triangle and label the lengths x, y, and h as shown:

Do you see that $x^{2}+h^{2}=b^{2}+c^{2}$ and $y+x=\sqrt{a^{2}+c^{2}}$? Do you also see that $y^{2}+h^{2}=a^{2}+b^{2}$? Let's play with this third equation using the first two for support.

We have:

$$
\left(\sqrt{a^{2}+c^{2}}-x\right)^{2}+h^{2}=a^{2}+b^{2}
$$

So:

$$
a^{2}+c^{2}-2 x \sqrt{a^{2}+c^{2}}+x^{2}+h^{2}=a^{2}+b^{2}
$$

yielding:

$$
2 x \sqrt{a^{2}+b^{2}}=x^{2}+h^{2}+c^{2}-b^{2}=2 c^{2}
$$

Thus:

$$
x=\frac{c^{2}}{\sqrt{a^{2}+c^{2}}}
$$

Now solve for h^{2} :

$$
\begin{aligned}
h^{2} & =b^{2}+c^{2}-x^{2}=b^{2}+c^{2}-\frac{c^{4}}{a^{2}+c^{2}} \\
& =\frac{a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}}{a^{2}+c^{2}}
\end{aligned}
$$

(Yick!)
Now we're all set to work out the area of the triangle: $A=\frac{1}{2} \times \sqrt{a^{2}+c^{2}} \times h$. ("Half base times height.") To avoid square roots let's compute instead A^{2} :

$$
\begin{aligned}
A^{2} & =\frac{1}{4}\left(a^{2}+c^{2}\right) h^{2}=\frac{1}{4}\left(a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}\right) \\
& =\left(\frac{1}{2} a b\right)^{2}+\left(\frac{1}{2} b c\right)^{2}+\left(\frac{1}{2} a c\right)^{2}
\end{aligned}
$$

Notice that each term squared is the area of one of the right triangles on the side of the rectangular box. So what have we got?

A triangle of area A sits across three mutually perpendicular right triangles. If these triangles have areas $\mathbf{B}, \boldsymbol{C}$, and D , then: $A^{2}=B^{2}+C^{2}+D^{2}$.

Exercise: A triangle crosses the x-, y - and z-axes at positions 3,5 and 8 . What is its area?

This alternative 3-D version of Pythagoras's theorem is not particularly well known!

RESEARCH CORNER:

The following box has the property that each side-length is an integer and each diagonal across a face is an integer.

Challenge1: Find another example of such a box.
Challenge 2: Unfortunately, the length of the longest diagonal inside this box, $\sqrt{73225}$, is not an integer. No one on this planet currently knows an example of a box with all side lengths and all diagonals integers. For world fame, can you find one?

HARD STUFF:

WHY DOES THE MULTIPLICATION TABLE TRICK WORK?
The claim is that every Pythagorean triple (a, b, c) with $a^{2}+b^{2}=c^{2}$ and a, b and c sharing no common factor can be written in the form:

$$
\begin{aligned}
& a=m^{2}-n^{2} \\
& b=2 m n \\
& c=m^{2}+n^{2}
\end{aligned}
$$

For some pair of integers m and n.
e.g. $\quad(3,4,5)$ comes from choosing $m=2$ and $n=1$.
$(5,12,13)$ from $m=3$ and $n=2$.
$(7,24,25)$ from $m=4$ and $n=3$.

It is easy to see that if a, b and c are of this form, then we have a Pythagorean triple:

$$
\begin{aligned}
a^{2}+b^{2} & =\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2} \\
& =m^{4}+n^{4}-2 m^{2} n^{2}+4 m^{2} n^{2} \\
& =m^{4}+n^{4}+2 m^{2} n^{2} \\
& =\left(m^{2}+n^{2}\right)^{2} \\
& =c^{2}
\end{aligned}
$$

Proving that every triple (a, b, c) - with no common factors - has entries of this form is tricky. Here's a proof:

THEOREM: Suppose $a^{2}+b^{2}=c^{2}$ with (a, b, c) a triple of integers with no common factors. Then

$$
\begin{aligned}
& a=m^{2}-n^{2} \\
& b=2 m n \\
& c=m^{2}+n^{2}
\end{aligned}
$$

Proof:

1. The numbers a, b, and c cannot all be even. (Otherwise they have a common factor of two.) So at least one of the numbers is odd.
2. If a and b are both even, then $c^{2}=a^{2}+b^{2}$ is even, making c even. We cannot have this. So one of a or b (or both) is odd.

Without loss of generality, let's say that a is an odd integer.
3. If b is odd, then $a^{2}+b^{2}=(2 k+1)^{2}+(2 r+1)^{2}=4\left(k^{2}+r^{2}+k+r\right)+2$ for some numbers k and r. This means that c^{2} is a square number that is two more than a multiple of 4 . This is impossible!

Reason: Either c is a multiple of four, it is one more than a multiple of four, two more than a multiple of four or three more than a multiple of four. In all these cases, we never get that c^{2} is two more than a multiple of four!

$$
\begin{aligned}
& (2 q)^{2}=4 q^{2} \\
& (2 q+1)^{2}=4\left(q^{2}+q\right)+1 \\
& (2 q+2)^{2}=4(q+1)^{2} \\
& (2 q+3)^{2}=4\left(q^{2}+3 q+2\right)+1
\end{aligned}
$$

So we must have a odd, b even making c odd.
4. Now: $a^{2}+b^{2}=c^{2}$ which means:

$$
b^{2}=c^{2}-a^{2}=(c-a)(c+a)
$$

But b is even and so is divisible by two. So $\left(\frac{b}{2}\right)^{2}=\left(\frac{c-a}{2}\right)\left(\frac{c+a}{2}\right)$ is a valid equation involving integers. (Recall that a and c are odd.)

Now comes the really tricky part!
5. If $\frac{c-a}{2}$ and $\frac{c+a}{2}$ are both multiples of a common number k then their sum, which is c and their difference, which is a, would also be multiples of k. And since $b^{2}=c^{2}-a^{2}, b^{2}$ would be also be a multiple of k and AFTER SOME TRICKY THOUGHT ABOUT HOW FACTORS OF NUMBERS WORK, this means that b itself would have to be a multiple of k. This is impossible since a, b and c have no common factors except $k=1$. So:

$$
\frac{c-a}{2} \text { and } \frac{c+a}{2} \text { have no common factors. }
$$

6. SOME MORE TRICKY THOUGHT ABOUT HOW FACTORS WORK gives ...

Since $\frac{c-a}{2}$ and $\frac{c+a}{2}$ have no factor in common yet their product is a
square number (namely $\left(\frac{b}{2}\right)^{2}$), this can only happen if each of $\frac{c-a}{2}$ and $\frac{c+a}{2}$ are themselves square numbers:

$$
\begin{aligned}
& \frac{c-a}{2}=n^{2} \\
& \frac{c+a}{2}=m^{2}
\end{aligned}
$$

Adding and subtracting gives ...

$$
\begin{aligned}
& c^{2}=m^{2}+n^{2} \\
& a^{2}=m^{2}-n^{2}
\end{aligned}
$$

Solving for b^{2} gives:

$$
b^{2}=c^{2}-a^{2}=2 m n .
$$

We're done!

COMMENT: The tricky number theory used here is based on the following principles:

1. Every number breaks down into a product of primes.

Thus when consider a common factor k of a set of numbers, it suffices to assume we are considering a factor that is a prime number.
2. Primes p has the property that if a product $M N$ is a multiple of p, then either M is a multiple of p or N is (or both).

Thus, if $R^{2}=M N$, with M and N sharing no common factors, then any prime factor p of R either goes into M or N (but not both). And since p^{2} goes into R^{2}, then this means that p^{2} actually goes into either M or N.

Also, all the prime factors of M and of Ngo into R^{2} and hence R.

All in all, this means that the prime factors of M must come squared making M a square number, and the prime factors of N come squares making Na square number if we hope $R^{2}=M N$ to be true.

FINAL COMMENT: All of this tricky number theory is explained with greater detail and greater clarity in Volume 2 of THINKING MATHEMATICS! available for purchase from www.jamestanton.com.
© 2009 James Tanton

