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For the mathematics and pedagogy of logarithms (and exponents), see: 
 

THINKING MATHEMATICS!   
Volume 1:  Arithmetic = Gateway to All 
Chapter 13. 

 

Let’s begin with an activity:  

 

ACTIVITY 
Here is how two ordinary rulers solve addition problems: 

 
To compute 2.7 3.5+ , for example, place the end of ruler 1 at the 2.7 mark of ruler 
2. Locate the position 3.5 on ruler 1 and read off the corresponding mark on ruler 2. 
This is the sum. 
 

 
 

Now consider two rulers with markings given by the powers of ten at each inch 

mark. They solve multiplication problems! 

 
 

As a ridiculously simple example, let’s compute 1000 100× . Place the start of ruler 1 

at the 1000 mark of ruler 2. Look for the mark 100 on ruler 2 and read off the 

corresponding position on ruler 1. This is the product.  

 

a) Cut out two strips of paper and mark the inch positions 10, 100, 1000, ….  Use 

your multiplication  rulers to read off a good estimate to the product 87 980× . Also 

estimate the product 120 9903× . 

 

b) Why do these rulers work? 
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THE STORY OF LOGARITHMS:  

 

During the Renaissance in Europe extraordinary advances in the arts and sciences 

led to new and profound understandings of the natural world. With the invention of 

the telescope (Galileo first called the device a perspicillum) the workings of the 

heavens were revealed and astronomy took off as an active and fruitful pursuit.  

 

As methods of recording data become more precise astronomers soon found 

themselves burdened by the simple process of arithmetic when performing 

calculations. These were, of course, all completed by hand. Adding sets of numbers 

is not too cumbersome (calculating 3.786 5.419+  by hand is not too onerous) but the 

multiplication of multi-digit numbers is extraordinarily tedious and prone to error. 

(Try computing 3.786 5.419×  by hand. Now imagine computing the product of 

twenty such numbers by hand!)  

 

In the late 1500s, Scottish mathematician John Napier (1550 – 1617) took it upon 

himself to help out his beleaguered scientific colleagues. He set out to devise a 

method that would convert multiplication problems into simpler addition problems. 

He succeeded, but his approach was creative to say the least.  

 

Napier envisioned two objects moving along a section of a straight line, one for each 

of two numbers to be multiplied. Their velocities were related, in a complicated way, 

to the original two numbers and he found that the process of computing the ratio 

of those velocities in effect converted the process of multiplying the two original 

numbers into an addition problem! He based the name of this technique on the 

Greek words logos for ratio and arithmos for number, hence the name logarithm. 
Going further, he decided it would be most helpful to scientists to base his theory 

on a number relevant to the size of the Earth, namely, 710 10,000,000= . He chose 

the number 
7

1
1
10

b = −  as the base of his logarithms and multiplied all the 

quantities he worked with by 710  to help avoid the appearance of decimals. Today 

his logarithm of a number N would be written 
7

7

1 7
1
10

10 log
10

N

−

 
 
 

.  

 

After Napier published his work in 1614, English mathematician Henry Briggs (1561-

1630) suggested to Napier that, like our number system, logarithms should be 

based on the number 10. Napier agreed that this would indeed simplify matters and 

10b = was then deemed the preferred base for logarithms. Base 10 logarithms are 

today called common logarithms or Brigg’s logarithms. The common logarithm of N is 

simply denoted log N . 
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Despite the complication of this theory, Napier’s methods were tremendously 

successful and highly praised. He developed tables of values so that practitioners 

need not worry about matters theoretical and could simply consult booklets he 

devised. (For example, to compute 2.3 5.7× one consults tables to see that Napier’s 

value for 2.3 is o.43, say, his value for 5.7 is 0.76, adds these by hand: 

0.43 0.76 1.19+ = , and return to the tables to see that 13.1 has logarithm 1.19. This 

is the product.)  

 

English mathematician William Oughtred (1575-1660) realized that two sliding 

rulers, with labels placed in logarithmic scale will physically perform the addition of 

logarithms and thus allow one to simply read off the result of any desired 

multiplication. “Slide rules” were invented. 

 

OUR POOR STUDENTS: 

Not to detract from Napier’s brilliance, but he missed the obvious! It took over one 

hundred years for mathematicians to realize that Napier’s logarithms are simply 

exponents backwards! The word “logarithm” is a confusing name for a concept that 

is actually very simple. Few students have trouble reading a statement such as the 

following: 

 

( )2 32 5power =    

 

“The power of two that gives the answer 32 is five.” But as soon as we write 

( )2log 32 5=  clarity and transparency is replaced by horror and fear!  

 

Think about it.  Do the following look reasonably un-scary (even though I am 

choosing some bizarre numbers)?   

 

( ) ( )

( )

( ) ( )

4 10

5 1

3

0.01 7

16 2 6

1
2 3 1

25

1 1
10 7

2 2

power power million

power power

power power

= =

  = − = − 
 

= − =

 

 

When logarithms are presented to students, it is often done in a way that feels 

remote and abstract, chiefly because of the notation. (If I were Czar of the 

mathematics teaching universe, one thing of the three things I would first decree 

is that all appearances of “log” in mathematics textbooks be replaced with “power” – 

with multiple side comments reiterating no disrespect to Napier.) 
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NAPIER’S DREAM:  

Do we indeed have ( ) ( ) ( )power M N power M power N× = + as Napier worked so 

hard to obtain? Well, yes!   

 

For simplicity, let’s work with base 2 and check if there is reason to believe 

( )2 8 16power ×  should equal ( ) ( )2 28 16power power+ . Here goes:  

 

8 is a product of three twos ( ( )2 8 3power = ),  

16 is a product of four twos ( ( )2 16 4power = ),  

8 16×  is the product of 3 4+ twos. 

 

That is, it takes 3 4+  twos to “make”  8 16× .   

 

That is, ( )2 8 16power ×
 
really does equal 3 4+  , which is 

( ) ( )2 28 16power power+ . 

 

 In general – and informally…   

 

It takes ( )2power M  twos to make ,M  

It takes ( )2power N  twos to make N ,  

and so it takes a total of ( ) ( )2 2power M power N+ twos to make M N× . 

 

COMMENT: To make this argument proper and formal, note that  

 

( ) ( ) ( )2 2 2power M N power M power N× = +  

 

is saying that ( ) ( )2 2power M power N+ is the power of 2 that gives the 

answerM N× . To check we need to use it as a power to two and see if we do indeed 

obtain the answer M N× .  

 

Note first that ( )22
power M

M=  (since ( )2power M  is the power of two that gives M ) 

and ( )22
power N

N= .  

 

Now we are ready. Here goes: 

 
( ) ( ) ( ) ( )2 2 2 22 2 2

power M power N power M power N
M N

+ = ⋅ = ⋅  
 

Yes! ( ) ( )2 2power M power N+  is indeed the correct power of two to give M N× .  
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CHALLENGES:  
 

EXERCISE: Explain each of the following “log” rules:  

 

 ( ) ( ) ( )3 3 3power M N power M power N÷ = −  

 

 ( )10 10
xpower x=  

 

 
( )bpower x

b x=  
 

 ( )1 0bpower =  

 

 ( ) 1bpower b =  

 

 ( )xbpower b x=  

 

COMMENT: In the notation of logarithms, these rules translate as follows: 

 

( )
( )

( )
( )

( )

3 3 3

log

log log log

log 10

log 1 0

log 1

log

b

x

x

b

b

x

b

M N M N

x

b x

b

b x

÷ = −

=

=

=

=

=

 

 

 

EXERCISE: I tell you that, for some number b: 

 
log 2 0.693

log 3 1.098

log 5 1.609

b

b

b

=

=

=

 

 

Without a calculator, find log 4b , log 6b , log 8b , log 9b , log 10b  and log 600b . 

Estimate log 7b  and log 70b . Also estimate ( )log 1 2 3 4 5 6 7 8 9 10b ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . 

  


