© 2009 James Tanton

Students in an algebra class spend many a week learning to sketch graphs of quadratic functions:

$$
y=a x^{2}+b x+c
$$

And students are usually taught to memorise the following:

The graph is an upward or downward U-shaped graph (called a parabola) depending on whether the leading coefficient a is positive or negative.

The vertex of the parabola occurs at $x=-\frac{b}{2 a}$. Plug in this of x into the formula to find the y-coordinate of the vertex.

Plugging in other values of x will help sketch the correct "steepness" of the U-shape. (Plugging in $x=0$ is usually a good choice.)

My first piece of advice:
FORGET THE FORMULA FOR THE VERTEX!
Memorising is joyless!

Here is an extraordinarily quick way to sketch these curves:

Prerequisite: This technique is based on the fact that that the graph of any quadratic curve $y=a x^{2}+b x+c$ is guaranteed to be a symmetrical U-shape curve, upward facing if a is positive, downward facing if a is negative.
(Read the essay Why are all quadratics U-shaped? to see why this is the case.)

Let's start with an example. Consider:

$$
y=x^{2}+4 x+5 .
$$

We know that this is going to be an upward-facing U-shaped graph.
[Actually ... if you cannot recall whether or not this will be upward facing or downward facing try plugging in $x=1000000$. Is the answer large and positive or large and negative?]

Pull out a common factor of x from the first two terms and write the expression as:

$$
y=x(x+4)+5 .
$$

This shows that $x=0$ and $x=-4$ yield the same output of 5 . We have two points on the parabola: $(-4,5)$ and $(0,5)$.

Since we know that the parabola is symmetrical, the vertex of the parabola must be half-way between these two x-values that yield the same output, namely, at $x=-2$. Substituting in gives the vertex at $(-2,1)$.

These three points allow us to sketch the quadratic.

EXAMPLE: Make a quick sketch of $y=-2 x^{2}+3 x+7$.

Answer: This is a downward facing parabola. We have:

$$
y=-2 x^{2}+3 x+7=x(-2 x+3)+7
$$

and this parabola has the value 7 at both $x=0$ and $x=\frac{3}{2}$. Because the graph is symmetrical, the vertex must be halfway between these values, at $x=\frac{3}{4}$. At this value, $y=\frac{3}{4}\left(-2 \cdot \frac{3}{4}+3\right)+7=\frac{9}{8}+7=8 \frac{1}{8}$.

The graph appears:

$$
\text { QUADRATICS OF THE FORM } y=a(x-p)(x-q)
$$

Consider, for example, the formula:

$$
y=2(x-3)(x+8)
$$

If we expand brackets we see that this can be rewritten:

$$
y=2 x^{2}+10 x-48
$$

and so the graph of this function is again an (upward facing) parabola.
In the same way, expanding brackets shows that $y=-3(x+4)(x-199)$ is a downward facing parabola. (CHECK THIS!)

In general:
$y=a(x-p)(x-q)$ is a parabola; upward facing parabola if a is positive, downward facing if a is negative.

Quadratics that happen to be in this factored form have the nice property that one can easily read off its x-intercepts.

EXAMPLE: Where does $y=2(x-3)(x+8)$ cross the x-axis? What is the x-value of its vertex? Briefly describe the graph of this function.

Answer: Can you see that $y=0$ for $x=3$ and for $x=-8$? Thus the graph of this function crosses the x-axis at these two values.

Because the graph is symmetrical (an upward facing parabola), the vertex occurs halfway between these two zeros. That is, the vertex occurs at $x=\frac{(-8)+3}{2}=-\frac{5}{2}$. Here the y-value of the graph is $y=2\left(-\frac{11}{2}\right)\left(\frac{11}{2}\right)=-\frac{121}{2}=-60 \frac{1}{2}$.

Just for kicks, the y-intercept is (put $x=0$): $y=2(-3)(8)=-48$.

The graph is thus:

An upward facing parabola with vertex $\left(-2 \frac{1}{2},-60 \frac{1}{2}\right)$, crossing the x-axis at $x=-8$ and $x=3$. The y-intercept is $y=-48$

EXERCISE: Quickly sketch the following quadratics:

a) $y=6 x+x^{2}-1$
b) $y=4 x^{2}+20 x+80$
c) $y=6-3 x^{2}-30 x$
d) $y=2(x-5)(x-11)$
e) $y=-3(x+4)(x-4)$
f) $y=-x(x+6)$

EXERCISE: Consider the quadratic $y=a x^{2}+b x+c$. Rewrite this as:

$$
y=x(a x+b)+c
$$

a) The x-coordinate of parabola's vertex lies between which two values?
b) Explain why the vertex of the parabola occurs at $x=-\frac{b}{2 a}$.

COMMENT: Many teachers make their students memorise this result. For example, given $y=3 x^{2}+4 x+8$, say, they like students to be able to say that its vertex lies at $x=-\frac{b}{2 a}=-\frac{4}{2 \cdot 3}=-\frac{2}{3}$. If speed is important to you, then great! If not, there is nothing wrong with writing $y=x(3 x+4)+8$ and saying that the vertex is halfway between $x=0$ and $x=-\frac{4}{3}$.

FURTHER: Download the pamphlet on TEACHERS' - and students' - GUIDE TO EVERYTHING QUADRATIC for further reading.

